The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial
PhD dissertation

Louise Mahncke Gulbrandt

Aarhus University
Health
2014

The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial

PhD-student:
MD, Louise Mahncke Gulbrandt, The Research Unit for General Practice, Danish Research Centre for Cancer Diagnosis in Primary Care, Department of Public Health, Aarhus University, Denmark.

Supervisors:
Professor, MD PhD, Peter Vedsted, The Research Unit for General Practice, Danish Research Centre for Cancer Diagnosis in Primary Care, Department of Public Health, Aarhus University, Denmark.

Consultant, PhD, Torben Riis Rasmussen, Department of Pulmonary Medicine, Aarhus University Hospital, Denmark.

Consultant, Dr.Med.Sci., Finn Rasmussen, Department of Radiology, Aarhus University Hospital, Denmark.

Consultant, PhD, Peter Meldgaard, Department of Oncology, Aarhus University Hospital, Denmark.

Assessment committee:
Senior lecturer, MD, PhD, Per Kallestrup. Department of Public Health, Aarhus University, Denmark (Chairman)

Professor of General Practice and Deputy Head of Schools, Claire Wilkinson, Health and Medical Sciences (Research), North Wales Centre for Primary Care Research, Bangor University, Wales.

Professor, Dr.Med.Sci, consultant Asger Dirksen, Department of Pulmonary Medicine, Gentofte Hospital, Denmark.

Financial support:
The project was carried out at The Research Unit for General Practice and further supported by the Committee for Quality Improvement and Continuing Medical Education (KEU) of the Central Denmark Region, the Multi-Practice Committee (MPU) of the Danish College of General Practitioners (DSAM), The Danish Cancer Research Foundation, the Danish Cancer Society and the Novo Nordisk Foundation. Sponsoring organizations were not involved in any part of the study.
Acknowledgements

This PhD thesis was carried out during my employment at the Research Unit for General Practice, Aarhus University, Denmark from December 2010 to September 2014.

I am grateful for having been granted the opportunity to complete this PhD study, which would hardly have been possible without the efforts of a number of people who all have contributed to make this process a very pleasant and educational experience.

First of all, I wish to express my sincere gratitude to my supervisors. The idea for the present work springs from inspiring discussions with my four “old” men. My thanks go to Peter Meldgaard, for believing in the idea (and in me) from day one and for kicking in the doors where this was necessary; to Torben Riis Rasmussen, for providing excellent and constructive supervision throughout the project; to Finn Rasmussen, for his high level of expertise, constructive feedback on the thesis and for the very important insider contact at the Department of Radiology, Aarhus University Hospital; and last but not least, to Peter Vedsted, for his never-failing commitment and support throughout the research process and for his constant and constructive feedback on all issues at all hours of the day. As my main supervisor, Peter Vedsted has inspired me deeply, and throughout the research process he has shared with me his high level of expertise on this subject.

I also wish to thank the other co-authors of the papers, Birgitte Holst Folkersen, Morten Fenger-Gren and Henry Jensen. Thank you, Birgitte, for the constructive co-operation in the study and for useful comments on the paper. Thank you, Morten, for statistical support, many good discussions and valued co-writing. Thank you, Henry, for letting me use your data, for helping me with the GP questionnaire and for answering all my stupid questions.

Thanks to all participating general practitioners in the county; without you, there would be no study. Thanks to Frede Olsen for your tremendous commitment and for insight and fruitful discussions.

Thanks to the Department of Radiology at Aarhus University Hospital for contribution with the CTs and the Department of Pulmonary Medicine for the clinical evaluation of the scans. Furthermore, my thanks go to nurses and secretaries at the Department for Pulmonary Medicine for always being so nice and cooperative.

Thank you Lone Niedziella and Dorthe Toftdal Nielsen for taking care of numerous practicalities together with proofreading and editing my papers. Also thanks to Morten Pilegaard for proofreading my thesis so promptly and so well.
I owe great thanks to Kaare Rud Flarup for his assistance with handling my data, setting-up the questionnaire and the databases. This PhD would be non-existing without your help!

I wish to thank the entire staff at the Research Unit for General Practice and the Department of General Practice. I have really enjoyed the years as a research fellow, and I am happy to have been given the opportunity to work in such a professional, interdisciplinary and cheerful environment created by all my wonderful colleagues.

My special thanks go to my “roomies” at “Riddersalen”. I am deeply thankful for the lively debates on essentially all topics, the shared grief when things did not go our way and the laughter (and cakes) when they did. Thank you for your never failing support, and, most of all, your friendship. This PhD would never have been so much fun without you, and I already dread the day when I have to leave you all.

Finally, my deepest gratitude and love goes to my family and friends. To my parents, for your never ending support in every way and for your deep belief in me. To Kasper, Sarah and Christian; I love you so much, and I dedicate this “book” to you.

Louise Mahncke Guldbært
09-09-2014
CONTENTS
The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>13</td>
</tr>
<tr>
<td>MOTIVATION</td>
<td>14</td>
</tr>
<tr>
<td>OUTLINE OF THE THESIS</td>
<td>15</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>19</td>
</tr>
<tr>
<td>1.1 GENERAL INTRODUCTION TO THE THEME</td>
<td>20</td>
</tr>
<tr>
<td>1.2 LUNG CANCER</td>
<td>20</td>
</tr>
<tr>
<td>1.2.1 Incidence and aetiology</td>
<td>20</td>
</tr>
<tr>
<td>1.2.2 Histology</td>
<td>21</td>
</tr>
<tr>
<td>1.2.3 TNM classification and staging</td>
<td>22</td>
</tr>
<tr>
<td>1.2.4 Treatment</td>
<td>24</td>
</tr>
<tr>
<td>1.2.4.1 Curative treatment</td>
<td>24</td>
</tr>
<tr>
<td>1.2.4.2 Palliative treatment</td>
<td>24</td>
</tr>
<tr>
<td>1.2.5 Prognosis</td>
<td>25</td>
</tr>
<tr>
<td>1.3 EARLY DIAGNOSIS OF LUNG CANCER</td>
<td>26</td>
</tr>
<tr>
<td>1.3.1 Time intervals</td>
<td>27</td>
</tr>
<tr>
<td>1.3.2 Initiatives to reduce delays in Denmark</td>
<td>28</td>
</tr>
<tr>
<td>1.4 DIAGNOSING LUNG CANCER IN PRIMARY HEALTHCARE</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1 General practice in Denmark</td>
<td>29</td>
</tr>
<tr>
<td>1.4.2 Symptoms of lung cancer</td>
<td>29</td>
</tr>
<tr>
<td>1.4.3 Diagnostic strategies in general practice</td>
<td>31</td>
</tr>
<tr>
<td>1.5 THE LOW-DOSE MULTI-DETECTOR COMPUTED TOMOGRAPHY SCAN</td>
<td>34</td>
</tr>
<tr>
<td>1.6 LUNG CANCER SCREENING</td>
<td>35</td>
</tr>
<tr>
<td>1.7 INTRODUCING DIRECT ACCESS FROM GENERAL PRACTICE</td>
<td>36</td>
</tr>
<tr>
<td>1.8 INTRODUCTION AT A GLANCE</td>
<td>37</td>
</tr>
<tr>
<td>1.9 AIMS</td>
<td>38</td>
</tr>
<tr>
<td>CHAPTER 2: MATERIAL AND METHODS</td>
<td>39</td>
</tr>
<tr>
<td>2.1 DATA SOURCES, REGISTRIES</td>
<td>40</td>
</tr>
<tr>
<td>2.1.1 The CPR number and the Danish civil registration system (CRS)</td>
<td>40</td>
</tr>
<tr>
<td>2.1.2 Statistics Denmark</td>
<td>41</td>
</tr>
<tr>
<td>2.1.3 The Hospital Discharge Registry</td>
<td>41</td>
</tr>
<tr>
<td>2.1.4 The Danish National Patient Registry (NPR)</td>
<td>41</td>
</tr>
<tr>
<td>2.1.5 The Danish Cancer Registry (DCR)</td>
<td>42</td>
</tr>
<tr>
<td>2.1.6 The Danish National Health Service Registry (HSR)</td>
<td>42</td>
</tr>
<tr>
<td>2.1.7 The provider number and the Provider Number Registry</td>
<td>42</td>
</tr>
<tr>
<td>2.1.8 The Danish Lung Cancer Registry (DLCR)</td>
<td>42</td>
</tr>
</tbody>
</table>
The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial

2.2. PAPER I ... 43
 2.2.1 Study design 43
 2.2.2 Study participants 43
 2.2.3 Data sources 43
 2.2.3.1 GP Questionnaire 44
 2.2.4 Outcome measures 44
 2.2.4.1 GP involvement and symptom interpretation 44
 2.2.4.2 The primary care interval and the diagnostic interval 45
 2.2.4.3 Diagnostic activity prior to diagnosis 45
 2.2.5 Statistical analyses 45

2.3 PAPER II ... 45
 2.3.1 Study design 45
 2.3.2 Study participants 46
 2.3.3. Setting 46
 2.3.4 Randomisation 46
 2.3.5 Intervention 46
 2.3.6 Outcome measures 46
 2.3.6.1 Numbers of CTs performed 46
 2.3.6.2 Chest physician time 47
 2.3.6.3 Focus group interview 47
 2.3.7 Statistical analyses 47

2.4 PAPER III AND PAPER IV ... 47
 2.4.1 Study design 47
 2.4.2 Setting and study participants 47
 2.4.2.1 Sampling of lung cancer patients, Paper IV 48
 2.4.2.2 GP questionnaire, Paper IV 48
 2.4.3 Randomisation 48
 2.4.4 Intervention 49
 2.4.4.1 The hypotheses of the intervention 49
 2.4.4.2 The contents of the intervention 50
 2.4.5 Sample size 51
 2.4.6 Outcome measures, Paper III 52
 2.4.6.1 GP/Patients characteristics and LD-MD CT outcome 52
 2.4.6.2 GP variation in use of LDCT and fast-track 52
 2.4.7 Outcome measures, Paper IV 52
 2.4.7.1 The primary care interval and the diagnostic interval 52
 2.4.7.2 Stage at diagnosis and fast-track referral rate 52
 2.4.8 Other variables in Paper IV 53
2.4.9 Statistical analysis 53
 2.4.9.1 Paper III 53
 2.4.9.2 Paper IV 53
2.5 ETHICS AND APPROVALS...54
 2.5.1 Paper I 54
 2.5.2. Paper II, Paper III and Paper IV 54

CHAPTER 3: ...55
RESULTS IN SUMMARY..55
3.1 PAPER I ..56
 3.1.1 GP involvement 56
 3.1.2 Intervals 56
 3.1.3 Activity 56
3.2 PAPER II ...57
 3.2.1 Numbers of CE-MDCT 57
 3.2.2 Time 57
 3.2.3 Satisfaction 57
3.3 PAPER III..57
 3.3.1 Patient characteristics and LDCT use 57
 3.3.2 CME 58
 3.3.3 LDCT outcome 58
 3.3.4 Use of fast-track pathway and fast-track lung cancer PPV 58
3.4 PAPER IV ..58
 3.4.1 Baseline data 59
 3.4.2 The intervals 59
 3.4.3 Stage 60
 3.4.4 General effects on other diagnostic strategies 60

CHAPTER 4: ...61
DISCUSSION OF METHODS...61
4.1 DATA VALIDITY ..62
 4.1.1 Design 62
 4.1.1.1 The cohort study (Paper I) 62
 4.1.1.2 The randomised controlled trial (Paper II) 62
 4.1.1.3 The cluster-randomised, controlled trial (Paper III and Paper IV) 63
 4.1.2 Sampling 63
 4.1.2.1 Sampling of lung cancer patients (Paper I) 63
 4.1.2.2 Sampling of patients referred to the existing fast-track pathway (Paper II) 64
 4.1.2.1 Sampling of GPs (Paper III and Paper IV) 64
 4.1.2.2 Sampling of lung cancer patients (Paper IV) 65
Chapter 5: Discussion of Results

5.1 Pathway to Diagnosis, Diagnostic Intervals and Diagnostic Activity (AIM 1)

- Page 80
- 5.1.1 Pathway to diagnosis
- 5.1.2 Diagnostic intervals
- 5.1.3 Diagnostic activity

5.2 Number of Performed MDCTs and Chest Physician Time (AIM 2)

- Page 82
- 5.3 Usage of LDCT and Fast-Track, Outcome of the LDCTs (AIM 3A)
- 5.3.1 Use of LDCT and fast-track pathway.
- 5.3.2 Outcome of CTs

5.3 Time to Diagnosis and Stage at Diagnosis (AIM 3B)

- Page 84
- 5.4.1 Time to diagnosis
- 5.4.2 Stage at diagnosis
- 5.4.3 Change in fast-track use and PPV for lung cancer
CHAPTER 6: ... 87
CONCLUSION, PERSPECTIVES AND IMPLICATIONS ... 87
 6.1 PATHWAYS TO DIAGNOSIS, DIAGNOSTIC ACTIVITY AND DIAGNOSTIC
 INTERVALS (AIM 1) ... 88
 6.1.1 Perspectives and implications ... 88
 6.2 NUMBER OF CT SCANS, CHEST PHYSICIAN TIME SPENT AND SATISFACT-
 TION WITH THE FAST-TRACK PATHWAY (AIM 2) ... 88
 6.2.1 Perspectives and implications ... 89
 6.3 USAGE AND OUTCOMES OF LOW-DOSE MDCT, TIME TO DIAGNOSIS
 AND STAGE (AIM 3) .. 89
 6.3.1 Perspectives and implications ... 89
CHAPTER 7: ... 91
FUTURE RESEARCH ... 91
CHAPTER 8: .. 93
REFERENCES ... 93
CHAPTER 9: .. 105
ENGLISH SUMMARY ... 105
 9.1 INTRODUCTION .. 106
 9.2 AIM ... 106
 9.3 METHODS .. 107
 9.4 RESULTS .. 107
 9.5 CONCLUSION AND PERSPECTIVES ... 108
CHAPTER 10: ... 109
DANSK RESUME ... 109
 10.1 INTRODUKTION ... 110
 10.2 FORMÅL ... 110
 10.3 METODE ... 111
 10.4 RESULTATER .. 111
 10.5 KONKLUSION OG PERSPEKTIVER .. 112
APPENDIX 1-8: .. 113
INFORMATION TO GPS ... 113
APPENDIX 9-10: ... 129
GP COVERLETTER ... 129
GP QUESTIONNAIRE ... 129
PAPER I .. 139
THE ROLE OF GENERAL PRACTICE IN ROUTES TO DIAGNOSIS OF LUNG
CANCER IN DENMARK ... 139
PAPER II .. 157
REDUCED SPECIALIST TIME WITH DIRECT COMPUTED TOMOGRAPHY FOR
SUSPECTED LUNG CANCER IN PRIMARY CARE .. 157

11
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

PAPER III..163
IMPLEMENTING DIRECT ACCESS TO LOW-DOSE COMPUTED TOMOGRAPHY IN GENERAL PRACTICE - METHOD, ADAPTATION AND OUTCOME.................163
PAPER IV ..173
THE EFFECT OF DIRECT ACCESS TO LOW-DOSE COMPUTED TOMOGRAPHY IN EARLY LUNG CANCER DETECTION: AN UNBLINDED, CLUSTER-RANDOMISED TRIAL...173
PREFACE
Motivation

After ending my rotation in internal medicine, surgery and general practice in 2008, I took a residency at the Department of Clinical Oncology at Aarhus University Hospital. I ended up staying for two and a half years there. During my years working with cancer patients, I met several patients who had experienced a delay in diagnosis and treatment. Some of these patients felt deep bitterness about this delay because they thought that the cancer might have been cured if it had been discovered earlier. When working at the Department, I have seen and treated many lung cancer patients. Unfortunately, a large proportion of these patients have died. The ones surviving this terrible disease were the ones lucky enough to be diagnosed with small localised tumours. As a future oncologist, I could not help but wonder how the initial diagnosis of the lung cancer patients in primary care was conducted. Why did the general practitioners not just identify patients at risk of lung cancer and diagnose the disease at an earlier time?

Several years later, I know that the task of diagnosing lung cancer in primary care is much more difficult than it may look from an oncologist’s chair. I am very grateful that I have had the possibility to focus on this exciting field. I hope that the greater understanding of the challenges of early diagnosis I have obtained will be useful in my future work as an oncologist with a special interest in the coordination between primary and secondary healthcare.
Outline of the thesis:

Chapter 1 introduces lung cancer epidemiology and detection, the concept of delay in cancer diagnosis and the idea of direct testing. I define key concepts and outline the basic premises of the thesis. The aim of the PhD study is presented at the end of the chapter. Chapter 2 describes the methods of the four papers. Chapter 3 summarises the results of the four papers. Chapter 4 discusses the strengths and weaknesses of the four papers, and Chapter 5 discusses the results. Chapter 6 gathers the conclusions pertaining to the aims of the study, and I discuss the implication of the present studies. In Chapter 7, I address how we may focus our future research. Chapter 8 holds the references, and the Chapters 9 and 10 are the English and Danish resumes.

The appendices contain information sent to the intervention GPs (Papers III and IV) and the GP questionnaire used in Paper IV together with the four papers (I-IV).

This PhD thesis is based on the following papers, which will be referred to by their Roman numerals:

Paper I

Paper II

Paper III

Guldbrandt LM, Rasmussen TR, Rasmussen F, Vedsted P: “Implementing direct access to chest computed tomography in general practice - method, adaption and outcome”. [Published in PLOS One]

Paper IV

ABBREVIATIONS

CE-MDCT Contrast enhanced multi-detector computed tomography
CI Confidence interval
CME Continuing medical education
CRS The Danish civil registration system
CT Computed tomography
cTNM Clinical TNM
DADI The Danish deprivation index
DCR The Danish Cancer Registry
DLCG The Danish Lung Cancer Group
DLCR The Danish Lung Cancer Registry
ENT Ear, nose and throat
GP General practitioner
HSR The Danish National Health Service Registry
ICD-10 The International Classification of Diseases, 10th revision
IQI Interquartile interval
LDCT Low-dose computed tomography
LD-MDCT Low-dose multi-detector computed tomography
LMG Louise Mahncke Gulbrandt
MDCT Multi-detector computed tomography
NPR The Danish National Patient Registry
NSCLC Non-small cell lung cancer
PET Positron emission tomography
PPV Positive predictive value
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTNM</td>
<td>Pathological TNM</td>
</tr>
<tr>
<td>PS</td>
<td>Performance status</td>
</tr>
<tr>
<td>PV</td>
<td>Peter Vedsted</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumour, nodes, metastasis</td>
</tr>
<tr>
<td>SCLC</td>
<td>Small cell lung cancer</td>
</tr>
</tbody>
</table>
The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial
CHAPTER 1:

Introduction
1.1 General introduction to the theme

"I followed the patient for almost 12 months because of drastic weight loss. I thought it was due to the patient’s serious lung disease (COPD). In hindsight, I should have referred the patient for diagnostic work-up”.

These are the words written by a general practitioner (GP).

Another GP writes,

"The patient’s spouse has recently been through a long diagnostic process for dementia … the patient has probably been hiding the symptoms for some time. The patient was arm-twisted to accept referral”.

And yet another writes,

"The patient had symptoms from the musculoskeletal system which could not be treated with painkillers or physiotherapy; chest X-ray was normal. The patient’s cancer was discovered when he was admitted to hospital for another reason”.

These three quotes from Danish GPs participating in one of the studies in the present thesis illustrate some of the difficulties GPs encounter when diagnosing lung cancer in general practice. Most clinicians probably recognise the contents of the case stories above.

The aim of this thesis is to increase our knowledge of the initial stages in the diagnosis of lung cancer in general and the diagnostic activity in primary care and the routes to diagnosis in particular. The thesis will also examine the effect of an additional diagnostic test, low-dose computer tomography (LDCT), performed from general practice. First, however, this chapter gives a brief overview of the epidemiology, treatment and prognosis of lung cancer in Denmark and an introduction to lung cancer diagnostics in primary and secondary care. Finally, the chapter summarises the background and outlines the aims of the study.

1.2 Lung cancer

1.2.1 Incidence and aetiology

Lung cancer is the second leading cancer type in both genders in Denmark. Annually, 4350 new cases are diagnosed (1), and the disease accounts for 12% of all cancer diagnoses and 23% of all cancer deaths in Denmark (1). In Europe, 85-90% of lung cancers are considered to be caused by cigarette smoking, and it is estimated that lung cancer will develop in 15% of lifelong smokers (2). An increased risk of lung cancer is also seen in people who are exposed to occupational components (e.g. asbestos, tar, soot), residential
radiation, indoor/outdoor air pollution and in patients with pulmonary fibrosis (2).

As the overwhelming majority of cases of lung cancer are attributable to cigarette smoking, the change in the incidence of lung cancer reflects a change in smoking habits with a lag phase in the order of 20-30 years (Figure 1). Primary prevention should accordingly continue to be a major focus. However, primary prevention is likely to only modestly impact mortality in the short term, and initiatives supplementing smoking cessation campaigns are needed to improve health outcomes, also in the growing cohort of ex-smokers.

Figure 1: The First set of curves is the proportion of female and male smokers in Denmark from 1970 to 2005. The second set is the proportion of heavy smokers (≥15 cigarettes per day) in Denmark in the same time period. (3)

1.2.2 Histology

Lung cancer can be divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) based on the WHO classification (4). NSCLC is the dominant type comprising 85-90% of all lung cancers in Denmark.

The simple distinction between SCLC and NSCLC is, however, no longer sufficient. Evidence suggests that NSCLC is a heterogeneous group of diseases requiring different treatment according to the type of NSCLC in question. A group of oncogene driver mutations (e.g. endothelial growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK)) has been discovered, and molecular target drugs have been developed and used since 2002, which has improved patient outcomes (5). Pathological examination of the cancer before treatment is planned is therefore becoming increasingly important, and chest physicians are accordingly faced with mounting pressure to gather sufficient material as are also pathologists to ensure early and correct tissue examination (6).
1.2.3 TNM classification and staging

Treatment options for lung cancer are legion, but the decision on which modality to use depends on a detailed and accurate assessment of the disease. In an effort to raise the quality of lung cancer diagnostics, the staging process is centralised at the Danish departments of pulmonary medicine. Investigations performed at these centres are important for answering the following three questions; does the patient have cancer, what are the treatment possibilities and, finally, what is the prognosis?

Patients with NSCLC are staged according to the International System for Staging Lung Cancer which is based on the 7th TNM System Classification (7) (Table 1). The T component describes the extent of the primary tumour in terms of both size and local invasion. The N component describes regional lymph node involvement, and the M component denotes whether distant metastases are present or not.

<table>
<thead>
<tr>
<th>T/M</th>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a (≤2cm)</td>
<td>IA</td>
<td>IIa</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T1b (>2cm)</td>
<td>IA</td>
<td>IIa</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T2a (≤5cm)</td>
<td>IB</td>
<td>IIa</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T2b (>5cm)</td>
<td>IIa</td>
<td>IIb</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T3 (>7cm)</td>
<td>IIB</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T3 (invasion)</td>
<td>IIB</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T3 (same lobe nodules)</td>
<td>IIB</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
</tr>
<tr>
<td>T4 (extension)</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td>T4 (pleural effusion)</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>M1a (ipsilateral lung)</td>
<td>IIIA</td>
<td>IIIA</td>
<td>IIIB</td>
<td>IIIB</td>
</tr>
<tr>
<td>M1a (contralateral lung)</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
<tr>
<td>M1b (distant)</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
<td>IV</td>
</tr>
</tbody>
</table>

Table 1: TNM for NSCLC according to the 7th WHO classification. Green boxes are operable/vs stage (8).

The TNM stage can be reported as either clinical TNM (cTNM - premised on investigations performed prior to the initiation of therapy) or surgical/pathological TNM (pTNM- based on histological analysis of the resected specimen) (7). The fact that the prognosis is more accurately predicted by the surgical/pathological stage than by the clinical grading is intuitive. However, all patients can be staged according to cTNM, which facilitates comparison of lung cancer patients across different stages.

The TNM system may be applied to patients with SCLC, but management decisions are not clearly based on the TNM stage. It is therefore more important to identify patients with metastatic disease or patients whose disease is limited to a particular area that may be amenable to radiotherapy.
Introduction

py, e.g. one hemi-thorax.

One of the key elements in the staging of lung cancer is the contrast-enhanced multi-detector computed tomography (CE-MDCT) of the chest and upper abdomen. CE-MDCT provides information about tumour size and invasion (T), some information about the presence of involved lymph nodes (N) and distant metastases (M) (e.g. in the liver or in the adrenal glands). The results of the CT are also taken into account when a diagnostic strategy is planned when deciding from which site a biopsy should be obtained in order to establish the final diagnosis.

Central tumours are mostly accessible with a bronchoscope combined with ultrasound endoscopy (either as endobronchial ultrasound (EBUS) (Figure 2) or from the oesophagus (EUS)) and fine needle aspiration. Peripheral tumours are most easily reached by transcutaneous biopsy guided either by CT, ultrasound or X-ray. Biopsies are obtained to confirm the presence of malignant cells, to classify the tumour according to the above histological classification and, for adenocarcinomas, to detect the presence of any oncogene driver mutations. Additional imaging can be used, e.g. positron emission tomography (PET)/CT (primarily for surgery candidates), CT/magnetic resonance (MR) of brain (if suspicion of brain metastases) or bone scintigraphy (if suspicion of bone metastases).

Figure 2: Fine needle biopsy with EBUS. Image courtesy of Olympus Europa SE & Co. KG°.
Each specific stage comes with particular therapeutic and prognostic scenarios; and before the final treatment plan is drawn up, a patient evaluation is needed combining clinical information (extent of comorbidity, lung function and performance status) with the TNM staging and the pathologic typing. In Denmark, the ambition is that all patients should be discussed at a multidisciplinary-team meeting (MDT). Growing evidence supports that these MDT meetings improve patient outcome and adherence to evidence-based guidelines (9,10).

1.2.4 Treatment

Treatment can have a curative or palliative intent depending on the factors mentioned above (stage, histological classification and patient evaluation).

1.2.4.1 Curative treatment

Surgery is the most effective treatment for lung cancer. Patients with localised NSCLC (stage I, II) can be offered surgery if their general health and lung function allow it. Surgery commonly consists of lobectomy (one lobe removed) or pulmectomy (one lung removed). Adjuvant (post operation) chemotherapy increases survival for all patients (except for stage IA and IB) (11).

Chemo-radiotherapy is an alternative treatment with a curative intent for patients who are not fit for surgery or for patients in stage IIIA. Combination of the two modalities increases the chances of survival compared with radiation alone (12).

Furthermore, stereotactic body radiotherapy (SBR), which is high-dose radiation, or thermal ablation are other modalities that may be used with a curative intent. SBR can be used for patients who are unfit for surgery and with small tumours (≤6 cm) and no lymph node involvement (13). Curative treatment for SCLC (limited disease) consists of combined chemo-radiotherapy (14) and, for a small number of patients, operation.

1.2.4.2 Palliative treatment

The purpose of palliative treatment is to prolong life and to relieve symptoms by limiting tumour growth and metastasis. For patients with metastatic disease and good general health, the standard palliative treatment is chemotherapy. Patients with one of the before-mentioned oncogene driver mutations constitute an exception to this. In such patients, the first-line treatment is biological treatment targeted at the mutation (15). Another palliative treatment option is radiation therapy targeted at the primary tumour or any metastases (bone, brain, etc.) (15).

In conclusion, the choice of treatment modality depends on histology, the stage of the disease, the patient’s general health and the presence of comorbidity. These factors largely determine the patient’s prognosis; and
the patient’s survival hinges on early diagnosis and a good general health. Furthermore, low-stage treatment is often simple and more likely to be effective.

1.2.5 Prognosis

As mentioned above, the stage of the disease at the time treatment starts is the most significant predictor of survival because an advanced stage reduces the likelihood of curative treatment. Thus, the 1-year survival rate is approximately 80% for stage I lung cancer and 20% for stage IV lung cancer (Figure 3).

![Figure 3: Survival curves for Danish lung cancer patients according to stage at diagnosis in the years from 2000-2012 (16).](image)

The stage distribution in Danish lung cancer patients has remained constant over the past decades, which implies that approximately 70% of patients with advanced stage lung cancer cannot be offered curative treatment (16).

The overall survival from lung cancer is lower in Denmark than in other comparable European countries. In 2007, the 1-year survival rate was 34.9% in Denmark but 43.6% in Sweden (17) (Figure 4). The low survival in Denmark is partly due to a more advanced stage at diagnosis. A large comparative study of lung cancer in 2004-07 (18) showed that the proportion of early-stage lung cancers (both NSCLC and SCLC) was lower in Denmark (and the UK) than in Sweden, Norway, Australia and Canada. For NSCLC, the proportion of patients with metastatic disease (TNM stage IV) ranged from 47.8% in Sweden to 55.0% in Denmark. The large propor-
tion of more advanced-stage cancer patients may be due to faster disease progression (possibly related to tumour biology because of the higher incidence of smoking in Denmark than in comparable countries (19)) or it may be due to longer diagnostic time intervals (20).

Figure 4: Age-standardised 1-year and 5-year survival trends 1995-2007, by country (17)

1.3 Early diagnosis of lung cancer

Thus, evidence indicates that one way in which survival from lung cancer may be improved is to ensure that the disease is diagnosed when it is at an early stage. However, it remains rather unclear how this may be achieved. However, studies suggest that avoidable delays in diagnosis do occur and that these delays are attributable to both patient, doctor and system behaviour.

First, patients experiencing a sign or a symptom have to acknowledge this and have to consult their GP. Studies indicate that several factors can delay
the patient’s presentation of symptoms; for example, underestimating the seriousness of symptoms and signs, the patient may fail to act on changes in his or her health (21-23). Furthermore, patients may worry about wasting the doctor’s time and therefore postpone seeking medical advice (24,25).

Second, studies have identified several reasons for a delayed referral from general practice to the secondary healthcare system. Delay may, for example, arise if patients present non-specific symptoms which may cause the GP to misinterpret the symptoms or not to refer the patient for diagnostic tests (22). Furthermore, a Danish study from 2006 found that false negative chest radiographs were one of the main reasons for delay in general practice (26) (Figure 5). For lung cancer, the observed median primary healthcare interval (from the patient’s first presentation in general practice to referral to secondary healthcare) was 34 days in 2008. The 25% of the patients who waited the longest waited for 64 days or longer (27).

![Figure 5: Delay in primary health care for patients with lung cancer. Green columns are patients with a false negative radiograph (28).](image)

Third, delays can occur in the time interval between referral to the secondary healthcare sector and initiation of treatment. This kind of delay is typically generated through inefficiency or long waiting times for appointments or tests (28). Three PhD theses from Aarhus University, Denmark document that system delay (from first presentation in general practice to treatment) accounts for a substantial part of the total delay experienced by Danish cancer patients (28-30).

1.3.1 Time intervals

In recognition of the importance of using generally agreed definitions of the different kinds of time intervals and delays in the cancer journey,
the present thesis uses the guidelines and definition of the International Consensus Group (Figure 6) (31). In addition, the term ‘time interval’ (as opposed to ‘delay’) will be preferred in this thesis when describing time in the diagnostic process.

Figure 6: The diagnostic pathways of the cancer journey (31).

1.3.2 Initiatives to reduce delays in Denmark

The 1990s saw growing general awareness about the existence of long hospital waiting times in the diagnosis of cancer. In response to this, a law was passed in 2001 presenting a 2-week waiting time guarantee from diagnosis to treatment. The years 2006 and 2007 saw the publication of several case stories of cancer patients experiencing delayed diagnosis or delayed treatment with fatal consequences. This, combined with results from the above-mentioned PhD theses from Aarhus University, illustrated that many Danish cancer patients experienced unacceptable clinical pathways. Making it clear that ‘cancer should be seen as an acute disease’, the Danish Cancer Society suggested a new model, and political agreement was reached according to which national cancer patient pathways were prescribed for all cancer types (32). By the spring of 2009, multidisciplinary groups had outlined fast-track referral pathways for diagnosis and treatment of the most common cancers (33). In 2012, a fast-track referral for non-specific cancer or serious disease was introduced. Furthermore, in 2011 it was decided to improve continuing medical education (CME) in cancer diagnostic for all GPs. Finally, several awareness campaigns have been launched to reduce patient delay (34).
1.4 Diagnosing lung cancer in primary healthcare

1.4.1 General practice in Denmark

Denmark’s publicly funded healthcare system provides patients with free access to general practice and to outpatient and hospital care. More than 98% of Danish citizens are registered with a particular GP whom they have to consult for primary healthcare services. The GP functions as a gatekeeper to the rest of the healthcare system with a few exceptions (e.g. emergencies and ear, nose and throat (ENT) diseases).

The GP plays a central role throughout the diagnostic investigation process, from the patient’s first symptom presentation until diagnosis. If a GP suspects lung cancer, (s)he can organise simple investigations like blood tests and chest radiographs (retaining the responsibility for the patient). If diagnosis is difficult or the investigations are abnormal, the GP can refer the patient to a department of pulmonary medicine, either to its normal waiting list or to its fast-track facility. At this point, the patient is no longer the GP’s responsibility. The GPs in most parts of Denmark are not allowed to refer patients directly to more specialised tests (e.g. CT scan) when they suspect lung cancer.

1.4.2 Symptoms of lung cancer

More than 90% of lung cancer patients are symptomatic at the time of diagnosis at which time patients usually experience two or three symptoms on average. Studies have shown that patients have been symptomatic for several months before they seek medical attention. Furthermore, most of the patients present initially to their GP. Overall, GPs are involved in the diagnosis of 85% of cancer cases, but we do not know the percentage for Danish lung cancer patients. Furthermore, studies indicate that lung cancer patients have several pre-referral consultations in general practice. This could be because many lung cancer patients seem to present with unspecific, vague or low-risk-but-not-no-risk symptoms and because they tend to consult more often for other smoking-related diseases.

Core lung cancer symptoms are indications for the fast-track pathway. According to the current guidelines, the GP has to consider lung cancer in people over 40 years who present with new respiratory or general symptoms that have lasted for more than 4 weeks (or exacerbation of chronic respiratory symptoms). Relevant symptoms include unexplained cough, haemoptysis and constitutional symptoms (e.g. weight loss, fatigue and loss of appetite). The symptom guidelines are based on secondary care research, i.e. the symptoms are those that are experienced by patients in the hospital setting. Symptoms indicating lung cancer are very common in general practice; and even though lung cancer is common, Danish GPs encounter only approx. one new case per year. This implies that the
patient’s risk of having the disease when presenting the symptoms is very low.

<table>
<thead>
<tr>
<th>Symptoms that should raise suspicion of lung cancer</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung-related symptoms:</td>
<td></td>
</tr>
<tr>
<td>Cough (PPV smokers: 0.86, non-smokers: 0.4)</td>
<td>As a minimum a radiograph, alternative fast-track referral</td>
</tr>
<tr>
<td>Cough for more than 4 weeks in patients with no history of lung diseases or a change in cough in patients with known lung disease.</td>
<td></td>
</tr>
<tr>
<td>Dyspnoea (PPV smokers: 1.2, non-smokers: 0.66)</td>
<td>Radiograph</td>
</tr>
<tr>
<td>Based on: atelectasis, pleural effusion or more rarely a diaphragmatic paralysis (tumour infiltration in n. phrenicus).</td>
<td></td>
</tr>
<tr>
<td>Abnormal spirometry (lung function test) (PPV smokers 4.0, non-smokers: 1.6)</td>
<td>Fast-track referral</td>
</tr>
<tr>
<td>Either restrictive (atelectasis, pleural effusion) or obstructive (tobacco-induced)</td>
<td></td>
</tr>
<tr>
<td>Stridor (PPV unknown)</td>
<td>Spirometry, laryngo-bronchoscopy, CE-MDCT thorax and upper abdomen</td>
</tr>
<tr>
<td>If cause unknown.</td>
<td></td>
</tr>
<tr>
<td>Chest pain (PPV smokers: 1.3, non-smokers: 0.82)</td>
<td>Fast-track referral</td>
</tr>
<tr>
<td>Tumour infiltration in chest wall or infiltration of brachial plexus (pancoast tumour). If continuing, recently developed pain in smokers (or former smokers) with no good explanation.</td>
<td></td>
</tr>
<tr>
<td>Haemoptysis (PPV smokers: 4.5, non-smokers: 2.4)</td>
<td>One time haemoptysis: Radiograph. Repeated: Fast-track referral to bronchoscopy.</td>
</tr>
<tr>
<td>Is frequently seen in patients with chronic bronchitis, but is also the symptom with highest PPV.</td>
<td></td>
</tr>
<tr>
<td>Unspecific symptoms (non-organ related):</td>
<td></td>
</tr>
<tr>
<td>For all non-organ related symptoms raising suspicion of cancer, lung cancer should be considered, especially if the patient is a smoker or a former smoker.</td>
<td></td>
</tr>
<tr>
<td>Tiredness (PPV smokers: 0.77, non-smokers: 0.43)</td>
<td>X-ray or fast-track referral</td>
</tr>
<tr>
<td>Loss of weight (PPV smokers: 2.1, non-smokers: 1.1)</td>
<td>X-ray or fast-track referral</td>
</tr>
<tr>
<td>Loss of appetite (PPV smokers: 1.8, non-smokers: 0.87)</td>
<td>X-ray or fast-track referral</td>
</tr>
<tr>
<td>Thrombocytosis (PPV smokers: 4.2, non-smokers: 1.6)</td>
<td>X-ray or fast-track referral</td>
</tr>
<tr>
<td>Advanced disease-related symptoms:</td>
<td></td>
</tr>
<tr>
<td>Bone pain</td>
<td>X-ray or fast-track referral</td>
</tr>
<tr>
<td>Bone metastases are common in lung cancer. Pain of unknown cause should lead to investigations.</td>
<td></td>
</tr>
<tr>
<td>Hoarseness</td>
<td>Referral to otologist</td>
</tr>
<tr>
<td>Tumour infiltration in n. recurrens. Duration longer than 3-4 weeks.</td>
<td></td>
</tr>
<tr>
<td>Oedema of head and neck</td>
<td>Acute to a Department of Pulmonary Medicine</td>
</tr>
<tr>
<td>Tumour infiltration in vena cava superior can lead to oedema of head and neck.</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Modified from DLCG, Reference program 2014 (8). PPV: Positive predictive value.

Much research has been undertaken in recent years in order to characterise lung cancer patients in general practice, mostly by mapping the positive predictive values (PPVs) for symptoms indicating lung cancer (41,46,48). The PPV of a symptom is the risk of having the disease of interest (here
lung cancer) when a certain symptom is reported. Even alarm symptoms have low PPVs (Figure 7) for lung cancer. For haemoptysis, the PPV is 4.5%, meaning that if a GP sees 100 patients (smokers over 40 years) in the clinic with this symptom, 4.5 of the patients will have an underlying lung cancer. For the more vague symptoms such as cough or tiredness, the PPVs are even much lower (48) (Table 2).

Figure 7: Positive predictive values (PPV) (%) for lung cancer for individual risk markers and for pairs of risk makers in combination (against a background risk of 0.16%) for smokers over 40 years. Notes: The top row (bold) gives the PPV for an individual feature. The cells along the diagonal relate to the PPV when the same feature has been reported twice. Other cells show the PPV when a patient has two different features. The yellow shading indicates a PPV above 1%, the amber shading a PPV above 2% and the red shading a PPV above 5% (48).

<table>
<thead>
<tr>
<th>Cough</th>
<th>Fatigue</th>
<th>Shortness of breath</th>
<th>Chest pain</th>
<th>Loss of weight</th>
<th>Loss of appetite</th>
<th>Raised platelets</th>
<th>Abnormal spirometry</th>
<th>Haemoptysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86</td>
<td>0.77</td>
<td>1.2</td>
<td>1.3</td>
<td>2.1</td>
<td>1.8</td>
<td>4.2</td>
<td>4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>0.97</td>
<td>1.3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1.8</td>
<td>1.2</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.9</td>
<td>1.4</td>
<td>2.3</td>
<td>2.8</td>
<td>6.5</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.0</td>
<td>1.4</td>
<td>1.3</td>
<td>2.0</td>
<td>2.3</td>
<td>2.4</td>
<td>>10</td>
<td>6.1</td>
</tr>
<tr>
<td>1.3</td>
<td>0.8</td>
<td>1.4</td>
<td>1.3</td>
<td>2.0</td>
<td>2.3</td>
<td>2.4</td>
<td>>10</td>
<td>6.9</td>
</tr>
<tr>
<td>1.5</td>
<td>1.0</td>
<td>1.5</td>
<td>1.4</td>
<td>4.4</td>
<td>7.6</td>
<td>>10</td>
<td>>10</td>
<td>4.1</td>
</tr>
<tr>
<td>1.7</td>
<td>0.9</td>
<td>2.2</td>
<td>4.4</td>
<td>1.7</td>
<td>5.0</td>
<td>>10</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>0.8</td>
<td>2.8</td>
<td>2.0</td>
<td>1.7</td>
<td>5.0</td>
<td>>10</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>2.7</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4.3 Diagnostic strategies in general practice

The GP who deals with patients presenting sign and symptoms that could indicate lung cancer must sort out the minority of patients who need urgent attention from the majority who are likely to have self-limiting or benign disorders. Despite the importance of this complex task, only little research has explored the process from symptom presentation to lung cancer diagnosis in a general practice perspective.

A Danish study from 2010 asked the GPs to interpret the symptoms presented by patients seen in practice before lung cancer was diagnosed (42). The study found that one third of the patients had alarm symptoms,
another one third had symptoms indicating serious disease (not cancer), and the last one third had vague symptoms (not indicating cancer or serious disease). The interpretation of the presented symptoms is important because any further action will depend on this interpretation:

Firstly, the GP can decide on a ‘wait and see’ approach, especially if the interpretation is that this patient most likely does not have cancer. This, combined with safety netting, follow-up appointments or blood test, etc., could be a reasonable approach in many cases. However, this approach may also be risky if it turns out that the patient did, indeed, have cancer. If the patient has cancer, the ‘wait and see’ approach could lead to delay with the risk of a stage shift to a more advanced disease.

Secondly, the GP can refer the patient to a chest radiograph which is the main diagnostic test for lung cancer in general practice. Radiographs are cheap and often easily available from general practice; and the radiation dose is low, around 0.1 mSv (Table 3). However, the lung cancer sensitivity is approximately 75% (49), and it is best for tumours in the peripheral lung parenchyma. For small (<2-3 cm) and central tumours, the sensitivity is much lower. Once visualised, the specificity of the chest radiograph is reasonably high (94%), although many chest films show an indistinct abnormality and must therefore be repeated. Studies in lung cancer patients show that negative chest film occur in as much as a quarter of cancers (26,50,51) with lesions being missed by the radiologist (52), and other lesions being not visible (52,53). This indicates that chest film can be helpful if positive, but that they are not particularly helpful if negative.

Thirdly, the GP can choose to refer the patient for an urgent specialist investigation through the fast-track pathway on the grounds of ‘reasonable suspicion’ based on an interpretation of the symptoms and/or an abnormal radiograph. This referral pathway includes a standard patient investigation spanning from the point of ‘reasonable suspicion’ of cancer to treatment initiation. Maximum waiting times between different investigations are specified for the fast-track pathway, and all the standard examinations are pre-booked and pre-planned. Any patient referred to the fast-track pathway must be seen at a department of pulmonary medicine within three days (changed in 2014 to six days). Institution of fast-track treatment in secondary care is decided at the discretion of a chest physician based on an outpatient evaluation. If the suspicion is maintained, the investigations begin with a contrast-enhanced MDCT in most cases. This CT is able to detect changes in the lung parenchyma down to a few mm, compared with 2-3 cm in a plain chest radiograph (Figure 8).
One of the political and administrative requirements to the fast-track program was that a specialist should see the patient before initiation of basic investigations. However, as GPs are already gatekeepers to specialised care, this could be considered a ‘double gatekeeping system’ which gives rise to inefficiency and delay. A common argument is that a more “straight-to-test” approach would generate unnecessary tests and that the ‘double gatekeeping’ therefore saves investigations. However, a study of open access to colonoscopy from general practice in the Netherlands in 2011 found only a slight increase in the number of colonoscopies, but a marked decrease in median time to treatment (54).

At this time, we do not know how the fast-track pathway may best be organised. Furthermore, the fast-track pathway does not yet appear to
have improved patient outcomes. This may be rooted in the fact that the indications are alarm symptoms or abnormal chest radiographs. Patients without alarm symptoms (or abnormal radiographs) cannot be diagnosed through this pathway; and as only about one third of patients have alarm symptoms, the fast-track option is effectively available only to a fraction of the patients for whom it might be relevant. Studies have shown that only 25% of UK patients are diagnosed through the fast-track (or two-week wait) pathway (55,56), but we do not know the equivalent figures from Denmark.

Other challenges currently facing the fast-track program include the risk of conferring emotional stress on patients when referring them for cancer diagnostics, and the relatively large amount of resources per patient consumed by this program.

In conclusion, based on the interpretation of the presented signs and symptoms, the GP can choose between three different approaches which all have pros and cons. In order to optimise the lung cancer diagnostics in general practice, it is crucial to gain a deeper understanding of the diagnostic process and of the diagnostic pathways. Furthermore, if the most optimal test for lung cancer is not the chest radiograph, how do we ensure that Danish GPs are provided with the best diagnostic options? Could the answer to earlier and faster diagnosis of lung cancer be a technological upgrade that gives GPs direct access to low-dose CT (LDCT)?

1.5 The low-dose multi-detector computed tomography scan

The low-dose multi-detector CT (LD-MDCT) utilises a lower dose of radiation than the contrast-enhanced MDCT (Table 3). LD-MDCT may be performed more quickly than a contrast-enhanced MDCT and requires no use of contrast medium. Various screening studies (57) have shown a sensitivity of LD-MDCT of approximately 95%. In screening trials, LDCT is used under the presumptions that 1) lung cancer presents as non-calciﬁed nodules, 2) LDCT accurately detects these nodules, and 3) detection of early-stage disease improves prognosis.

<table>
<thead>
<tr>
<th>Radiation type</th>
<th>Radiation size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average annual background radiation (natural background and cosmic radiation) and human made sources (medical equipment)</td>
<td>6.2 mSv</td>
</tr>
<tr>
<td>Radiograph, chest</td>
<td>0.1 mSv</td>
</tr>
<tr>
<td>Low-dose MDCT, chest</td>
<td>1.5-3 mSv</td>
</tr>
<tr>
<td>Contrast enhanced MDCT chest and upper abdomen</td>
<td>5-7 mSv.</td>
</tr>
</tbody>
</table>

Cancer risk from exposure to ionising radiation is estimated using cancer risk models: Annual LD-CT examination from 55 to the age of 74: lifetime attributable risk of lung cancer mortality is estimated to 0.07% for males and 0.14% for females.

Table 3: Radiation in mSv (mili Sieverts) from different diagnostic modalities (58)
Studies have shown that the LDCT outperforms plain chest radiographs for detection of lung cancer. A large US screening trial comparing CT with radiographs found a positive scan in 27% of participants screened with LDCT compared with 6.2% positive chest radiographs (59).

A main challenge in the use of LDCT (and even more so with contrast-enhanced MDCT) is the frequent detection of pulmonary nodules. A lung nodule is defined as a small spherical focus of abnormal soft tissue (60). The prevalence of such nodules depends on the studied population and the diagnostic modality (LD-MDCT or CE-MDCT). In general, the prevalence is reported to be 8% to 51% in LDCT screening studies (61). The PPV of lung cancer in a 4-10-mm nodule is 0.2-3.0%. Detecting 233 benign nodules in 1000 healthy screened volunteers, the authors of an UK CT screening study proposed an algorithm for follow-up and investigation of these nodules based on their size (62). This algorithm was revised in 2013 (63), and it is now part of the standard procedure in Denmark where it is used to inform the choice of follow-up program for patients with nodules (Table 4).

<table>
<thead>
<tr>
<th>Nodule size¹</th>
<th>Low-risk patient²</th>
<th>High-risk patient³</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤4 mm</td>
<td>No follow-up</td>
<td>Follow-up CE-MDCT at 12 month</td>
</tr>
<tr>
<td>4-6 mm</td>
<td>Follow-up CE-MDCT at 12 month, if unchanged size: no further follow-up</td>
<td>Follow-up CE-MDCT at 6-12 and then 18-24 month</td>
</tr>
<tr>
<td>6-8 mm</td>
<td>Follow-up CE-MDCT at 6-12 and then at 18-24 month</td>
<td>Follow-up CE-MDCT at 3-6, 9-12 and then at 24 month</td>
</tr>
<tr>
<td>>8 mm</td>
<td>Follow-up at 3, 9 and 24 month with CE-MDCT, PET and/or biopsy</td>
<td>Follow-up at 3, 9 and 24 month with CE-MDCT, PET and/or biopsy</td>
</tr>
</tbody>
</table>

Table 4: Example of the algorithm for solid nodules: Newly detected indeterminate solid nodule in persons who are 35 years of age or older. ¹Average length and width. ²Low risk: minimal or absent history of smoking and of other known risk factors. ³High risk: history of smoking or of other known risk factors (62,63).

1.6 Lung cancer screening

The main tenant of screening is that early detection improves diagnosis. An evaluation of several decades of screening performed to reduce lung cancer-related deaths concludes that chest radiographs and sputum cytology have done little, if nothing, to reduce mortality (64,65). Approximately 10 years ago, observational studies found that a chest LD-MDCT may be a more efficacious screening instrument than previously used modalities. In response to this, a large US screening study initiated in 2002 showed a 20% reduction in mortality rates for those screened with LD-MDCT compared with X-rays (59). At the same time, multiple screening trials in Europe, all using LDCT, were initiated (66-71).
Although screening with chest LD-MDCT was shown to reduce mortality in lung cancer in a single study (59), several other issues must be addressed before introducing screening as part of standard care. These issues include an evaluation of its cost effectiveness, and the radiation risk involved and any adverse events, among others. In Denmark, the decision to implement LDCT awaits the completion of the Danish trial (70) (and a trial combining all European trials). This Danish trial has not yet shown any mortality reduction. The detection rate of lung cancer in the study is 0.8%, which is similar to that of other screening studies.

A final, additional concern about screening is that even with the most optimal screening, the majority of lung cancers are diagnosed outside the program (72). There would therefore seem to be a need for access to valid investigations for patients who are not covered by the current screening programs. Furthermore, if LDCT screening is going to be implemented in secondary care, one diagnostic strategy could be to give the GPs the same imaging opportunity for case finding in general practice.

1.7 Introducing direct access from general practice

Earlier and faster diagnosis in general practice may be achieved by granting GPs free, direct access to LDCT; this would provide them with a more sensitive lung cancer test than the chest radiographs, and it would ensure their continued responsibility for the patients as opposed to the present system where patients are referred for specialised tests in the secondary healthcare system.

Concerning early lung cancer diagnosis, only a few studies have examined direct access to tests from general practice. A study in the UK examined the effect of a campaign encouraging patients with a cough to report to their GP (73). This was done by posters on billboards and in the local press, and these initiatives were coupled with a liberalisation of the criteria for requesting a chest radiograph. As a result, general practice radiograph referral rates rose by 20%. Moreover, the investigators observed an increase in the number of lung cancers diagnosed. Unfortunately, no significant stage shift (more cancers diagnosed in early stage) was found; the increase in the number of diagnoses was seen at all stages, including the most advanced ones.

In another UK study, patients with respiratory symptoms, who were aged more than 50 years, were granted direct access to a radiograph, thereby bypassing the GP. The study found a 63% increase in community-initiated chest radiographs, but only 0.5% more lung cancers were detected (74).

To the authors’ knowledge, no studies on direct access to LDCT from general practice have been published. Therefore, we do not know how many
lung cancers will be diagnosed in symptomatic patients presenting to their GP (i.e. LDCTs cancer PPV in general practice). Furthermore, we have no knowledge of how many extra investigations will be needed. Likewise, we do not know whether the GPs would use a direct access to LDCT if they had this opportunity or which patients they would refer. Finally, we do not know if direct access to LDCT would result in earlier diagnosis of lung cancer.

1.8 Introduction at a glance

- Lung cancer is a common and deadly disease. Its prognosis correlates closely with disease stage when treatment is initiated.

- Lung cancer mortality is higher in Denmark than in most other European countries. This may be due to a more advanced disease stage when treatment is initiated.

- Most lung cancer patients experience symptoms and present these symptoms to the GP. The GP’s interpretation of the symptoms shapes any further investigatory activities.

- It is important to provide Danish GPs with the best diagnostic options in order to further early diagnosis of lung cancer. To achieve this, we need knowledge about the routes to diagnosis, the pre-diagnostic activity and the use of fast track in general practice.

- Seeing two specialists before initiation of investigations in the fast-track pathway may not be the most efficient scheme, but we do not know the optimal organisation of the fast-track pathway.

- Chest radiograph is the main diagnostic tool used in general practice diagnosis of lung cancer, but its sensitivity is low and false negative radiographs may introduce delay.

- LDCT has a very high sensitivity for lung cancer, but it mostly deploys a higher radiation dose, and it is a more expensive modality than the chest radiograph. No studies have examined whether GPs will use a direct LDCT access option and what the outcomes of these scans will be.

- No studies have examined whether direct access to LDCT from general practice will reduce the diagnostic intervals or ensure diagnosis of lung cancer at a lower stage.
1.9 Aims:

The aims of this thesis were:

1. To describe Danish patients’ pathways to the diagnosis of lung cancer in general and the pre-diagnostic activity leading up to diagnosis in particular. An additional aim was to explore the diagnostic intervals for specific patients groups (Paper I).

2. In a randomised, controlled trial including all patients referred for the existing fast-track scheme to either direct chest and upper abdomen CE-MDCT or to evaluation by the chest physician, (i) to test: Fast-track performance measured by the number of CE-MDCT scans and chest physician specialist time per diagnosis (Paper II).

3. In a two-arm, clinical, controlled, cluster-randomised trial where direct referral to LDCT together with a lung cancer update is compared with usual practice, (i) to test how LDCT is used in this group of patients and the outcome of LDCT (Paper III); and (ii) to test the effect of either modality on the time to lung cancer diagnosis, the TNM stage and the use of the fast-track pathway for lung cancer (Paper IV).
CHAPTER 2:

Material and methods
The studies in this thesis differ in design, data sources, study population and outcome measures (Table 1). The methods and materials will therefore be described individually for Paper I, Paper II and Paper III/IV. First, however, this chapter describes the data sources used in one or more of the papers.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Study population</th>
<th>Data source</th>
<th>Study design</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Incident lung cancer patients, Denmark 2010.</td>
<td>GP questionnaire NPR, DCR, HSR</td>
<td>Cohort study</td>
<td>Routes to diagnosis. Time to diagnosis. Diagnostic activity.</td>
</tr>
<tr>
<td>II</td>
<td>Patients referred from primary care to fast-track</td>
<td>Patient records Focus group interview. DLR</td>
<td>RCT</td>
<td>Use of CE-MDCT. Physician time per patient. Physician/nurse satisfaction.</td>
</tr>
<tr>
<td>III</td>
<td>Patients referred from primary care to direct CT.</td>
<td>Patient records DLR, HSR</td>
<td>Cohort study (nested in a RCT)</td>
<td>Characteristics of patients referred. Use of direct LD-MDCT. Outcomes of LD-MDCT Use of fast-track (CE-MDCT).</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of Papers I-IV

2.1 Data sources, registries

2.1.1 The CPR number and the Danish civil registration system (CRS)

In Denmark (and other Nordic countries), researchers have exceptional opportunities to perform register-based research because every person with a permanent residence in Denmark has a unique personal identification number. At birth or immigration, all citizens in Denmark are allocated a personal 10-digit identification number, the CPR number. This number is registered in the Danish civil registration system (CRS) and allows linkage between all national registries at the individual level. The CRS contains information about vital status (dead or alive) and residence (75).
2.1.2 Statistics Denmark

As a central authority, Statistics Denmark is responsible for collecting, processing and publishing statistical information and for making statistical analyses and prognostics (3). Researchers can apply for data from Statistics Denmark for further analysis, and we obtained the data on the patients’ socioeconomic characteristics (education and marital status) used in Papers I and IV from this institution.

Furthermore, using data from the Integrated Database for Labour Market Research (IDA) (76), which is owned by Statistics Denmark, we were able to calculate a deprivation score for each GP’s practice population; these data were used in Paper III and Paper IV. The Danish deprivation index (DADI) has eight variables that are scored individually and sum up to a score between 10 and 100; the higher the number, the greater the extent of deprivation in the practice population. The variables used are: (i) Proportion of adults aged 20-59 with no employment, (ii) proportion of adults aged 25-59 with no professional education, (iii) proportion of adults aged 25-59 with low income, (iv) proportion of adults aged 18-59 receiving public welfare payments (transfer income or social benefits), (v) proportion of children from parents with no education and no professional skills, (vi) proportion of immigrants, (vii) proportion of adults aged 30+ living alone and (viii) proportion of adults aged 70+ with low income (= the lowest national quartile).

2.1.3 The Hospital Discharge Registry

The Patient Administrative System (PAS) stores administrative information on hospital activities for all regions in Denmark. Since 1995, data on outpatients have also been included. These data are collected with the purpose of handling resources and charting activities, service goals and guarantees of treatment. Data include dates of hospital admission and discharge, types of admission (elective or acute) and up to 20 discharge diagnoses classified according to the International Classification of Diseases (ICD-10).

2.1.4 The Danish National Patient Registry (NPR)

Each of the Danish regions runs its own PAS and submits data to the NPR which stores data on 99.4% of all discharges from Danish somatic hospitals. Since 2010, the NPR has served as the basis for the payment of public and private hospitals (77). Additionally, the NPR is used for medical research, even though this is not its main purpose (78). In the NPR, we were able to identify lung cancer patients for Papers I and IV. The registry was also used to obtain information about comorbidity and performed chest radiographs (Paper I).
2.1.5 The Danish Cancer Registry (DCR)

The DCR is a national research and surveillance register designed to collect and process data on Danish cancer patients. The files of the DCR hold information on date of diagnosis, cancer type, site morphology and history of cancer, etc. The cancer patients are coded according to the ICD-10. If a patient develops more than one primary cancer, each cancer is registered in an individual record. In the DCR, information about tumour stage at diagnosis is provided by a multi-disciplinary team decision, it contains both cTNM and pTNM if available. Reporting to the DCR became mandatory in 1987. Due to comprehensive quality control and validation, it is possible to extract data from the DCR only for the previous calendar year (79). We used the DCR to confirm the diagnoses from the NPR and to obtain information about tumour stage at diagnosis (Paper I).

2.1.6 The Danish National Health Service Registry (HSR)

The HSR holds information about payment of services between the regions in Denmark and all health professionals contracted with the tax-funded primary healthcare system, e.g. GPs. The register is run by the National Board of Health, and its data are based on the health professionals’ invoices to the regional health administrations. The purpose of this register is to document activities in primary healthcare for administrative use and to contribute to research in primary care. The registry holds information on GPs’ remuneration, whereas no information about diagnoses can be obtained (80). Information about performed chest radiographs (Paper I) was obtained from the HSR.

2.1.7 The provider number and the Provider Number Registry

Every health professionals contracted with the tax-funded healthcare system has a provider number. The provider number system is used to control the supply of GPs and, to a certain extent, to control expenditures. GPs are allowed to sell or share their provider number and office facilities. GPs can choose to work in solo practices or in group practices (in the latter case, the GPs can share a provider number or have one provider number per GP). Danish citizens are free to choose their own GP unless the GP list is closed (GPs are allowed to close their lists when the number of persons on the list reaches 1600 persons). The list system enables the GP to develop a better knowledge of the individual patient which ensures continuity of care. The Provider Number Registry contains information on the name and addresses of every health professionals with a provider number (81).

2.1.8 The Danish Lung Cancer Registry (DLCR)

The DLCR was established in 2001 as a national database. It contains clinical information about Danish lung cancer patients such as lung func-
tion, co-morbidity and stage, which are combined with data on cancer treatment and follow-up. In the DLCR, information about tumour stage at diagnosis is provided by a multi-disciplinary team decision with one TNM stage (which can be either cTNM or pTNM). Since 2003, the DLCR has contained data on more than 90% of all lung cancer cases in Denmark (82). The registry was used for identification of patients and verification of cancer diagnosis and date of diagnosis in Papers III and IV.

2.2. Paper I

2.2.1 Study design

We conducted a national registry-based cohort study on first-time primary lung cancer patients in Denmark in 2010.

2.2.2 Study participants

The lung cancer patients were sampled to form part of a national cohort of newly diagnosed cancer patients (except non-melanoma skin cancer) aged 18 years or older during a 4-month period from 1 May 2010 to 31 August 2010. During the inclusion period, cancer patients were identified consecutively from the NPR.

The patient inclusion criteria for this study were 1) living in Denmark, 2) ≥ 18 years, 3) registered in the NPR with an ICD-10 code C34.0-9 as the primary diagnosis, 4) diagnosed in the study period and 5) listed with a GP. To identify incident cancer cases, we excluded patients who had previously been registered with any cancer type (except non-melanoma skin cancer (C44)) in the DCR.

A total of 990 lung cancer patients were identified in the NPR. We excluded 14 patients because the diagnosis could not be validated in the DCR 1 year later. In addition, five patients registered with a lung cancer diagnosis in the DCR before 1 January 2010 were excluded. A questionnaire was sent to the remaining 971 patients’ GPs of whom 690 (71.1%) responded.

2.2.3 Data sources

The DCR was used to verify the diagnosis and obtain data on tumour stage. Stage at diagnosis was grouped according to the TNM system (version 6)(83) and was dichotomised into local and advanced disease. A cut-point between stage IIB and IIIA was chosen since a previous study has documented a significant difference in mortality between these two stages (84). If any of the T, N or M values were missing, we categorised SCLC as limited if the tumour was M0 and as extensive if the tumour was M1 regardless of the values, known or unknown, of other compo-
nents. We categorised NSCLC as advanced if the TNM stage included values of T4, N3 or M1. This was done regardless of the other components (85).

Since a small number of X-rays are performed outside the hospital in private clinics, we obtained data on radiology procedures from both the NPR and the HSR in the time period from one year before diagnosis until the date of diagnosis.

In order to adjust for confounding by patient characteristics, we obtained data regarding comorbidity from the NPR. This was based on ICD-10 codes for previous hospitalisations until the date of diagnosis. The presence of comorbidity was defined according to the Charlson Comorbidity Index (CCI) (86,87) and categorised as low (CCI=0), medium (CCI=1-2) or high (CCI≥3). Furthermore, education (including basic school) was dichotomised into “≤10 years” and “>10 years” (88). Marital status was dichotomised into “cohabitating” or “living alone”.

2.2.3.1 GP Questionnaire
A questionnaire was sent to the general practice where the patient was listed. The aims of the questionnaire were to gain knowledge on the extent of GP involvement in the lung cancer diagnosis and dates in the diagnostic process. Furthermore, the GPs were asked to list the symptoms and signs presented by the patients and how they interpreted the patients’ symptoms. The questionnaire was developed in 2009 by colleagues at the Research Unit for General Practice, Aarhus University (89). As no pre-designed questionnaires for the specific purpose were available, ad hoc questions were constructed based on previously used, validated items (26,27,90). In practices with more than one GP, the GP most familiar with the patient was asked to complete the questionnaire based upon the medical records. There was no reimbursement for participation.

2.2.4 Outcome measures

2.2.4.1 GP involvement and symptom interpretation
The patients were divided into groups depending on whether or not the GP answered the questionnaire. Patients whose GP answered the questionnaire were divided into groups if the GP was involved in the diagnostic process measured by the yes/no question: “Were you/your general practice involved in the diagnosis of the cancer?”. GPs involved in the diagnosis were asked to state whether the patient was referred through a fast-track route. Moreover, GPs were asked to rate their interpretation of the presented symptoms as either 1) Alarm symptoms suggestive of cancer (alarm symptoms), 2) Symptoms suggestive of any serious illness (serious, but unspecific symptoms) or, 3) Vague or ill-defined symptoms not directly suggestive of cancer or other serious illness (vague symptoms).
2.2.4.2 The primary care interval and the diagnostic interval
The primary care interval and the diagnostic interval were calculated by combining data from the DCR and the GP questionnaire. The primary care interval was defined as the time from the first presentation in primary care until referral to secondary care (calculated from GP questionnaire). The diagnostic interval was defined as the time from the first presentation until decisive diagnosis (calculated from the GP questionnaire and the DCR data) (31).

2.2.4.3 Diagnostic activity prior to diagnosis
As a measure of the diagnostic activity in primary care, we assessed the number of chest radiographs performed in the year before diagnosis. In the DCR, the date of diagnosis is the date that matches the day when the patient was admitted to hospital or seen as an outpatient and at which the lung cancer was diagnosed.

2.2.5 Statistical analyses
Patient groups were compared using Wilcoxon’s rank-sum test for ordinal or continuous data including time intervals, the Kruskal-Wallis test for differences between groups or Pearson’s chi-squared test for nominal or dichotomous data.

Backward cumulative curves for the dates of the latest and the second-latest X-ray before diagnosis and associated 95% confidence bands were drawn by applying a standard Kaplan-Maier procedure and normal approximation on a reversed time scale.

We used generalised linear models for the binomial family to calculate the associations between long intervals and gender, age, marital status, education, comorbidity, GP interpretation and use of fast-track pathways. Long intervals were defined as the 4th quartile for the full study population. This implies a prevalence of the outcome above 20%, in which case interpretation of odds ratios as prevalence ratios can lead to non-negligible bias (91). Consequently, we chose the logarithm for the link function to facilitate direct estimation of prevalence ratios. Analysis of time intervals was restricted to patients whose GPs were involved in the diagnosis.

2.3 Paper II

2.3.1 Study design
We performed a randomised, two-arm (1:1), controlled study testing contrast-enhanced MDCT scans before evaluation by a chest physician compared with usual practice (patients seen by a chest physician both before and after the CE-MDCT).
2.3.2 Study participants

Cases enrolled in this study were suspected of having lung cancer and referred exclusively from general practice to fast-track evaluation during the period from 1 January to 1 December 2012. Patients referred to fast-track evaluation for lung cancer are coded DZ 031.B (lung cancer observation). We identified patients with this code and the patient’s GP, using the practice provider number. There were no exclusion criteria.

2.3.3 Setting

The study was performed at the Department of Pulmonary Medicine, Aarhus University Hospital. The department covers approximately 140 general practices. On average, the department evaluates 650 fast-track referrals from general practice annually, and the Department is highly specialised in lung cancer detection and diagnosis of lung cancer in conformity with the prevailing Danish guidelines. A chest physician triages the patient, referred e.g. from general practice, to an outpatient evaluation. If, when evaluating the patient, the chest physician shares the referrer’s suspicion of lung cancer, the patient will usually be referred to a contrast-enhanced MDCT of the chest and upper abdomen.

2.3.4 Randomisation

For practical reasons, we chose to perform the randomisation before the study period as a single procedure in which all potential patients born in even months (February, April, June, August, October and December) were allocated to the intervention group and patients born in odd months were controls. Technically speaking, this could be termed a cluster randomisation. However, as allocation according to birth (odd or even month) must be considered random with respect to the allocation between intervention/control and lung cancer, we consider such a distinction to be appropriate for the present purpose.

2.3.5 Intervention

In the intervention group, the patients were allocated a direct CT scan including information provided by a nurse prior to the CE-MDCT, thus bypassing the chest physician. Control patients were seen by a chest physician, as usual, before the CE-MDCT.

2.3.6 Outcome measures

2.3.6.1 Numbers of CTs performed
The proportion of patients who had a CE-MDCT scan performed was measured. Data were obtained from the electronic patient records.
2.3.6.2 Chest physician time
We measured consultation time for a 3-week period (November 2012). All consultations regarding lung cancer were measured by a scientific assistant blinded to the patient’s allocation status. The physicians were not aware of the time measurement. Time was measured as minutes from the time where the patient entered the physician’s consultation room until the time when the patient left the room again.

2.3.6.3 Focus group interview
A focus group interview was undertaken to clarify the feasibility of the new organisation. The interview was conducted by LMG and PV after the study had closed. The informants were two consultants (chest physicians) and one pulmonary nurse engaged in the organisation of the fast-track pathway. The interview was recorded with the informant’s consent. The interview guide included open-ended questions focusing on the positive/negative characteristics of the traditional organisation in comparison with the new organisation. The informants were encouraged to provide details on changes and to assess the medical quality of the services. The interview lasted 45 minutes, and a summary was compiled at the end to obtain an immediate validation of the presentation of the themes identified by the researchers.

2.3.7 Statistical analyses
Patients groups were compared using Wilcoxon’s rank-sum test for ordinal or continuous data and Person’s χ^2-test for unordered or dichotomous categorical data. The proportion of referred patients who did not receive a CT and the difference between the groups were calculated. Associated 95% confidence intervals (CIs) were assessed using a standard normal approximation. Patients were allocated to randomisation groups according to the intention-to-treat principle.

2.4 Paper III and Paper IV

2.4.1 Study design
We conducted a clinical cluster-randomised, two-arm (1:1), unblinded study (IV) and a cohort study nested in the trial (III).

2.4.2 Setting and study participants
The study took place in a large catchment area around Aarhus University Hospital in the Central Denmark Region; the study period was 19 months (November 2011 to June 2013).

A total of 266 GPs organised into 119 general practices, allowed to refer patients to the Department of Pulmonary Medicine, were randomised into...
two groups. At the patient level (Paper IV), the inclusion criteria were that the patient should be listed with a participating GP in the study period and have a new diagnosis of lung cancer (ICD10 34.0-9). There were no exclusion criteria.

Before November 2011, the GPs in the area had three diagnostic work-up possibilities for patients with respiratory symptoms that could indicate lung cancer. They could either refer patients to 1) a chest radiograph, 2) the Department of Pulmonary Medicine within the normal waiting list, or 3) the lung cancer fast-track pathway with a maximum of 72 hours’ waiting time. Indication for fast-track referral was either an abnormal chest radiograph or certain qualifying ‘red-flag’ symptoms (e.g. coughing (for at least 4 weeks) or haemoptysis). GPs were not allowed to refer patients directly to a CT.

2.4.2.1 Sampling of lung cancer patients, Paper IV
All cases of lung cancer (ICD10 34.0-9) were identified starting from 1 January 2012 after a 2-month study run-in period. To ensure completeness, cases were obtained from a combined identification in the DLCR and the NPR on a monthly basis. The lung cancer cases were checked against the practice patient lists in order to identify the patients’ GPs. From these lists, we also gathered information about practice list size and the age and gender distribution of the patients listed with the practice.

2.4.2.2 GP questionnaire, Paper IV
A short questionnaire was sent to the lung cancer patient’s general practice. In practices with more than one GP, we asked the GP most familiar with the patient to complete the questionnaire. The questionnaire non-responders received a reminder after four weeks. The responding doctors got a reimbursement for their participation (€17, £15). The GPs were told to use their medical records when answering the questions about whether the general practice/GP had been involved in the diagnosis of the lung cancer, the dates in the diagnostic pathway and the use of a fast-track pathway.

A database was created for the purpose of managing questionnaire logistics. The questionnaires were optically scanned using the computer program Teleform Enterprise Version 8 (Cardiff Software Inc., San Marcos, CA, USA. To maximise the completeness and accuracy of the questionnaire data, the optical scanning and the verification of the scanning results was done only by LMG. A coding manual describing the handling of inadequately filled-in items was developed. The verified Teleform questionnaire data were transferred to Stata (StataCorp LP, College Station, Tex, USA).

2.4.3 Randomisation
The unit of randomisation was the practice address. The randomisation was performed by a data manager using Stata 12.0. The 119 practices were allocated a random number between zero and one and then listed from
the lowest to the highest value. The top 60 practice addresses formed the intervention group.

2.4.4 Intervention

2.4.4.1 The hypotheses of the intervention

The intervention was allocated at the cluster level. The contents of the intervention, the hypothesised consequences and the measured outcomes are shown in Figure 1.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Hypothesised consequences</th>
<th>RCT outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct access to low-dose CT scan</td>
<td>Decreased use of chest radiographs</td>
<td>Decreased number of false negative radiographs</td>
</tr>
<tr>
<td></td>
<td>Increased diagnosis of small tumours</td>
<td>Early diagnosis of lung cancer</td>
</tr>
<tr>
<td></td>
<td>Identification of lung nodules</td>
<td>Follow-up scans</td>
</tr>
<tr>
<td></td>
<td>Direct access to test</td>
<td>Faster diagnosis</td>
</tr>
</tbody>
</table>

Figure 1: The intervention, the hypothesised consequences and outcomes. CT: computed tomography, TNM: Tumour, Node, Metastases, GP: General practitioner, PPV: Positive predictive value.

It was hypothesised that direct access to a low-dose MDCT from primary care would result in faster diagnosis of lung cancer. A direct access to LDCT would decrease the use of chest radiographs and thereby decrease the risk of false negative chest films. Combined with the provision of CME, it was further hypothesised that heightened awareness of early lung cancer symptoms would decrease the intervals in the diagnostic process. This effect would be observed notably in the form of a shorter primary care interval; and we hypothesised that if the GPs were more familiar with these patients, more would be referred to the correct department for diagnosis and this would decrease the patients’ diagnostic interval as well. Moreover, if the GPs used LD-MDCT directly from general practice instead of chest radiographs, it would be possible to diagnose more patients with small lung tumours. In addition, some of the patients scanned would enter a nodule follow-up program and some of them would eventually be diagnosed with lung cancer, hopefully when the disease was still at a low stage.
Furthermore, it was hypothesised that the provision of CME would cause more patients to be referred to fast-track diagnostic work-up which would increase the referral rate and hence affect PPV rates in the fast-track route (Figure 1).

2.4.4.2 The contents of the intervention
Six times within an initial 3-month period, the intervention practices were informed by letter about the possibility of referring patients to direct, low-dose chest CT (Appendix). The letters included information concerning the referral procedures and the specific indications for a CT request. These indications embraced a wide range of concerns; the only exception was patients who already met the indication for a fast-track referral. The idea was to let the GPs substitute the radiograph with a low-dose chest MDCT to rule out lung cancer in patients who did not meet the indications for the fast-track referral.

The GPs were offered participation in a 1-hour small-group-based CME meeting held during the first two months of the study to increase their awareness of early lung cancer and to encourage them to refer more patients to tests (LDCT or fast-track pathway) for lung cancer. During the meeting, the GPs were briefed about the state-of-the-art of early detection of lung cancer based on algorithms for PPVs in primary care (46,48). The GPs also received information about the use of LD-MDCT and how to interpret CT reports. The GPs received a pamphlet containing PPVs for lung cancer and indications for LDCT referral. This pamphlet was also sent to intervention GPs who did not participate in the CME meetings.

In the initial 2 months of the project, the patients (approximately 90 patients) were scanned with a contrast-enhanced MDCT of the chest and upper abdomen. Due to a high referral rate of patients and because these scans are more time-consuming than the LDCT without contrast, the project group decided to change to the LDCT. This was done to minimise time spent per patient as well as to minimise the radiation dose.

2.4.4.3 Chest LD-MDCT, review and lung cancer diagnosis

The Department of Radiology, Aarhus University Hospital, performed the LDCTs. Scans were performed on a Brilliance 64 CT Scanner by Philips with a beam collimation of 64 x 0.625, 2 mm slice thickness, 1 mm increment, 1 pitch and a rotation time of 0.75 s. The effective radiation dose (Monte Carlo simulation program CT-Expo v. 2.1) for the LDCT was 2-3 mSv. Intravenous contrast medium was not administered.

The time limit from referral to performed LDCT was a maximum of two working days. When wanting to refer a patient to direct LDCT, the GP (or the secretary) made a telephone call to the Department of Radiology, and the patient was immediately informed about the time for the scan. In addition, the GP forwarded an electronic referral note to the department.
The CT reports were made by three sub-specialised consultant radiologists. Based on the LD-MDCT report and the patient’s medical history, a recommendation was agreed upon at a conference between a consultant chest physician and a consultant radiologist the day after the scan, and this recommendation was forwarded electronically to the GP. The GP had full responsibility for informing the patient about the result and, if necessary, to refer the patient for further diagnostic work-up.

If lung nodules (4-10 mm) that could not be categorised as benign were detected, the GP was responsible for referring the patient to a follow-up program (3, 6, 12 months after the first scan) based on the size and the characteristics of the nodules and according to international standard (62,63). The follow-up program was decided by the chest physician. Incidental findings on the CT scan outside the lungs judged to be of clinical significance were reported to the GP with recommendations for referral to a relevant department depending on the nature of the suspicion. Pulmonary pathology on the CTs other than lung cancer was also noticed.

If the CT scan gave rise to any suspicion of lung cancer, the GP referred the patients through the fast-track to standard diagnostic work-up at the Department of Pulmonary Medicine. This included contrast-enhanced MDCT (including PET/CT if surgery was an option). Furthermore, a histologic/cytologic diagnosis was obtained by the least invasive method, which was usually either bronchoscopy with biopsy, fine-needle aspiration (FNA) in association with endoscopic ultrasound (EUS) or endobronchial ultrasound (EBUS), or transthoracic FNA. The final staging was decided by a multi-disciplinary team decision based on cTNM information. The lung cancers were staged according to the 7th TNM Classification of Malignant Tumours (83). Early-stage cancers were defined as stage I-IIB. Early-stage patients were offered surgical resection according to Danish guidelines.

2.4.5 Sample size

It can be assumed that lung cancer patients are randomly distributed among GPs. There could, however, be a higher incidence of cancer in some areas with many smokers and in practices with many elderly patients. To account for an unknown intra-cluster correlation coefficient (ICC), we counted on a design effect of 1.25 (92).

In 2008, half of the Danish lung patients waited 34 days or more (the median) from first presentation to primary care until diagnosis of lung cancer (27). We hoped to be able to show a decrease in the diagnostic interval to a level where only 25% of the patients had to wait for 34 days or more. Thus, the proportion waiting 34 days or more should be halved. With a one-sided alpha of 5% and a power of 80%, we had to include 54 lung cancer patients in each arm with a 1:1 randomisation. Given the design effect, we
The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial

had to include a total of 54*2*1.25 = 135 lung cancer patients with questionnaire data and GP involvement in the diagnosis.

2.4.6 Outcome measures, Paper III

2.4.6.1 GP/Patients characteristics and LD-MD CT outcome
Based on the GPs’ referral notes, we obtained data on the patients’ symptoms, known diseases and smoking histories. We obtained the medical records from completed CT scans, including the consensus evaluation between the radiologist and the chest physician. The DLCR was used to obtain information on any subsequent diagnosis of lung cancer (International Classification of Diseases 10: C34.0-9). Furthermore, the DCR was used to obtain information about previous cancer (except non-melanoma skin cancer (C44)). We used DADI to gather information about the deprivation scale in the different GP clinics.

2.4.6.2 GP variation in use of LDCT and fast-track
The HSR and the Provider Number Registry were used to gather information about GP list size and the age/gender distribution of the patients listed with the GPs. Patients referred to fast-track evaluation for lung cancer are coded DZ 03.1B (lung cancer observation). This code, combined with the unique GP practice number, gave information about referral to the fast-track pathway and on the basis of this information and the information from the DLCR, the lung cancer PPV in the fast-track pathway could be calculated.

2.4.7 Outcome measures, Paper IV

2.4.7.1 The primary care interval and the diagnostic interval
The primary care interval was defined as the time from the first presentation in primary care until referral to secondary care; the diagnostic interval was defined as the time from the first presentation until decisive diagnosis (31)). Data were obtained from the GP questionnaires and the DLCR (the latter providing the date of diagnosis).

2.4.7.2 Stage at diagnosis and fast-track referral rate
Stage at diagnosis was stated in a multidisciplinary team decision as cTNM. The cancer stage was re-grouped into stage IA, 1B, IIA, IIB, IIIA, IIIB and IV according to the TNM (version 7). The stage was then dichotomised into local and advanced using a cut-point between stage IIB and IIIA. This was done as there is a significant difference in mortality between these two stages (84).

We wanted to test whether there was a difference in the use of the fast-track pathway and the PPV for lung cancer between intervention GPs and control GPs. This would indicate whether the possible effect of the new diagnostic modality and the CME focusing on lung cancer diagnosis was
a general effect or if it was related to the possibility to refer directly to CT. Patients referred to fast-track evaluation for lung cancer were coded DZ 03.1B (lung cancer observation). This code combined with the GP provider number gave information about referral to the fast-track pathway.

2.4.8 Other variables in Paper IV

Patient comorbidity was obtained from the GP questionnaire where the GP stated if comorbidity was present or not. For each identified lung cancer patient, the socio-economic position was collected from Statistics Denmark and dichotomised as in Paper I. We used DADI to gather information about the deprivation score in the different GP clinics’ populations.

2.4.9 Statistical analysis

2.4.9.1 Paper III

Patient characteristics were described and duration of symptoms was calculated as medians with interquartile intervals (IQI). GP groups were compared using the Wilcoxon’s rank-sum test for ordinal or continuous data or Pearsons χ^2 test for unordered or dichotomous, categorical data.

We calculated the referral rates to direct low-dose MDCT and fast-track based on the number of patients referred by the GP per project month per list size for patients aged 25 years and above. We used sex and age standardisation to compare the referral rates between CME-attending GPs and non-attending GPs. We used the CME-attending GPs as the standard population and calculated the referral rates for the patients listed with the GPs for 10-year age groups (25-34, 35-44, etc.). These expected rates were then applied to the non-attending GP list. We calculated the standardised referral rate ratio as the number of referrals divided by the expected numbers if the age- and sex-specific rates were the same as those of the standard population. The age-sex referral rate was then obtained by multiplying the referral rate ratio by the crude referral rate of the standard population.

2.4.9.2 Paper IV

We compared baseline characteristics and crude study outcomes in patients listed with intervention GPs with patients listed with control GPs using Pearson’s chi-squared test or Wilcoxon rank-test.

Primary analyses were performed by standard intention to treat with participants analysed according to their GP’s randomisation. The primary care and the diagnostic interval were presented as medians with IQI. We used general linear models (GLM) for the binomial family to calculate associations between long intervals and the patients’ randomisation status. Long intervals were defined as the 4th quartile of similar intervals from Danish lung cancer patients in 2010 as calculated in Paper I. In these analyses, we accounted for clusters of patients within GPs using cluster
robust variance estimation and adjusted for patient age and presence of comorbidity as it has previously been shown that these factors can influence the lengths of the intervals (Paper I).

In supplementary analyses, we corrected for non-compliance by comparing patients listed with GPs who participated in the CME with patients from a similar group of patients listed with control GPs (93). These estimates were not diluted by lack of compliance as they are in standard intent-to-treat analyses.

Referral rates were calculated based on the number of patients referred by the GP per project month per patient aged 25 years and above. For the non-compliance analyses on referral rates, we used the risk of having a low referral rate (defined as among the 25% lowest referral rates for the two groups together).

2.5 Ethics and approvals

2.5.1 Paper I

The study was approved by the Danish Data Protection Agency (J. no.: 2010-41-4694) and The Danish Health and Medicines Authority (J. no.: 7-505-29-1484/1 and J. no.: 7-604-04-2/195/EHE). According to the Research Ethics Committee of the Central Denmark Region, the Danish Act on Research Ethics Review of Health Research Projects (s. 8(3) of Act No. 402 of 28 May 2003) did not apply to this project.

2.5.2 Paper II, Paper III and Paper IV

The study was approved by the Danish Data Protection Agency (Ref. no.: 2011-41-6872) and the Danish Health and Medicines Authority (Ref. no.: 7-604-04-2/357/KWH). According to the Research Ethics Committee of the Central Denmark Region, the Danish Act on Research Ethics Review of Health Research Projects did not apply to this project (Ref. no.: 118/2011) as CT is already a widely used technology. Clinicaltrials.gov: NCT01779726 (Paper II) and NCT01527214 (Papers III and IV).
CHAPTER 3:

Results in summary
This chapter offers a summary of the results presented in the papers in this thesis. For a more detailed description, please read the papers in appendix.

3.1 Paper I

3.1.1 GP Involvement

GPs were involved in the diagnosis of 68.3% of the lung cancer patients. If the GPs were involved, a fast-track referral was initially used in 40.9% of the cases. In total, 27.4% of all patients in the study were diagnosed by presenting to the GP and then by referral to the fast-track pathway.

3.1.2 Intervals

The overall median primary care interval was 7 days (IQR: 0-30), whereas the median diagnostic interval was 29 days (IQR: 12-69). Older age was statistically significantly associated with an increased likelihood of longer intervals of both kinds. Patients referred to a fast-track route experienced statistically significantly shorter median diagnostic intervals than patients not referred to a fast-track route (23 days (IQR: 11-52) vs. 34 days (IQR:12-88)). Patients with advanced disease stages had statistically significantly shorter diagnostic interval than patients with localised disease, but, surprisingly, their primary care interval was similar. An increased likelihood of a long primary care interval (adjusted PR: 4.8 (2.8-8.2)) and a long diagnostic interval (adjusted PR: 2.4 (1.5-3.9) was seen if the GP interpreted presented symptoms as “vague” than if the GP interpreted symptoms as “alarm” symptoms.

3.1.3 Activity

During the 90 days before diagnosis, 85.6% of the patients had at least one radiograph and 33.6% had at least two. The proportion of patients who had one radiograph was higher among patients referred to the fast-track route (66%) than among those who did not go through the fast track (49.4%). We found that among patients for whom the GP interpreted the symptoms as ‘serious, but unspecific’, the proportion of those who two or more radiographs was higher than among patients for whom the GP stated ‘alarm symptoms’ (35.9% vs. 22.1%). Furthermore, the proportion of patients who had two or more radiographs was higher among patients with comorbidity (41.6%) than among patients with no co-morbidity (26.8%).
3.2 Paper II

3.2.1 Numbers of CE-MDCT

A total of 508 patients were eligible and included during the 11-month study period. Ten patients in the intervention group did not have a CT (4.1%, 95% CI: 2.0-7.3%); seven patients in the control group had no CT (2.8%, 95% CI: 1.1%-5.8%). The difference in “CTs not conducted” between the two groups was –1.3% (95% CI: –4.4-2.0%; p = 0.454).

3.2.2 Time

Time was measured at 48 consultations, and the difference in time spent per patient between the intervention group (one visit) and the control group (two visits) was 13.3 min. (min.-max.: 7.7-19.5 min.). For every 100 patients evaluated in the fast track with direct CE-MDCT, the department would save 22.2 hours (min.-max.: 12.9-32.4 h) in comparison with the usual organisation.

3.2.3 Satisfaction

The focus group interview identified a range of advantages of the new organisation:

“The patients are very satisfied. They understand the logic behind first receiving the scan and subsequently seeing the doctor. This is a good thing for the patients” (nurse). “Many patients can save a parking ticket, and most of the patients can be seen in the morning by the nurse, they can be at work at nine o’clock” (nurse). “The new organisation has reduced the number of medical consultation hours involving a doctor; hours that we can spend on the patients in need of care” (physician 1). “The new organisation provides greater flexibility for the unit when scheduling the daily programme. Patients can be seen by a nurse while the doctor is engaged elsewhere” (physician 2).

3.3 Paper III

3.3.1 Patient characteristics and LDCT use

During the study period of 19 months, 648 low-dose MDCTs were performed. The mean age of scanned patients was 62.1 years. The most prominent symptom was coughing (78.2% of the patients referred). The duration of symptoms varied from a median of 1.5 weeks (haemoptysis) to a median of 8.0 weeks (coughing). A total of 133 GPs had access to direct CT. This possibility was used by 68.4% of the GPs. Most GPs referred two patients during the study period. The unadjusted referral rate for all GPs was 0.10 per 1000 patients (≥ 25 years of age) per month. When we excluded the GPs who did not use the possibility of direct CT, the unadjusted GP referral rate
was 0.18 per 1000 patients (≥25 years of age) per month. There was no difference in GP age, gender, type of clinic (solo or more GPs together), list size or levels of deprivation in relation to the use of LDCT scans.

3.3.2 CME

In total, 48.1% of the GPs participated in the CME meetings. When adjusting for patient age and gender and GP list size, the referral rate was 61% higher for GPs working in a clinic with one or more CME-participating GPs than the referral rate for non-participating GPs.

3.3.3 LDCT outcome

Of the 648 patients who underwent CT, 36.1% patients had a normal scan, while lung nodules were found in 22.7% of the patients. Cancer suspicion was raised in 13.0% of the scans, and suspicion of other lung diseases was raised in 30.9%. For 47.2% of the patients, no further diagnostic work-up was needed.

During the study, 30 (4.6% of the scanned) patients were diagnosed with a severe lung disease (tuberculosis, sarcoidosis or interstitial lung disease). In addition, in 44 patients (6.8%) (not known with any lung disease), signs of COPD were identified. Furthermore, 15 (2.3% of the scanned) patients were diagnosed with NSCLC, none had SCLC. Stage distribution was as follows: 9 (60%, 95%CI: 32.3-83.7%) in early stage and 6 (40%, 95%CI: 16.3-67.7) with advanced disease. Six (40.0%, 95%CI: 16.3-67.7) were stage I tumours. In addition to the lung cancers, we identified eight (1.2% of all scanned) patients with other cancers (three breast cancers, two lymphomas, one rectal cancer, one hepatocellular carcinoma and one mesothelioma).

3.3.4 Use of fast-track pathway and fast-track lung cancer PPV

The GPs referred 335 patients to the existing lung cancer fast-track route during the study period (33 lung cancer diagnoses; PPV for cancer: 9.9%). The referral rate to the fast-track pathway was 0.19 per 1000 patients ≥ 25 years for CME-participating GPs compared with 0.15 for non-participating GPs (p-value: 0.451). The PPV for a lung cancer diagnosis as a result of referral to a fast-track lung cancer pathway was 13.3% for CME-participating GPs and 6.1% for non-participating GPs (p-value: 0.027), which is equivalent to a 2.2 higher hit rate.

3.4 Paper IV

During the study period of 19 months, 331 incident lung cancer patients were diagnosed at the Department of Pulmonary Medicine at Aarhus University Hospital; 171 were listed with intervention GPs and 160 with con-
Results in summary

There was no statistically significant difference in questionnaires returned or in involvement in diagnosis between control and intervention GPs (Figure 1).

Figure 1: Participants flow
*Percentage of patients with questionnaire data.

3.4.1 Baseline data

The GPs in the intervention group were slightly older (mean 53.6 years compared with 51.6 years), more were working in a solo practice and their patients were slightly more deprived. Sixty-four (48.5%) of the GPs in the intervention group who were offered CME participated in the CME.

Lung cancer patients (for whom the GP returned the questionnaire) from both intervention and control GPs were similar with respect to age, gender, education, marital status and comorbidity.

3.4.2 The intervals

For all patients, the median primary care interval was 16 days (IQR: 4-56) and the overall median diagnostic interval was 39 days (IQR: 17-93). There was no statistically significant difference in intervals between patients in the intervention group and patients in the control group.

There was no difference in the proportions experiencing long primary care or diagnostic intervals between patients from the control and the intervention groups. Within the intervention group, both primary care and diagnostic intervals were statistically significantly lower if the GP (or a GP in the clinic) participated in the CME (primary care interval median: 9 days vs. 37 days, p= 0.048; diagnostic interval median: 23 vs. 66, p=0.008).

When correcting for non-compliance, we found a statistically insignificantly higher risk for having a long diagnostic interval for patients from
the control group (risk difference (RD): 13.5% (95% CI: -11.0-37.9%, p-value=0.280)); no difference in risk for having a long primary care interval was observed (RD: 1.1% (95% CI: -23.9-26.1%, p-value=0.929)).

3.4.3 Stage

The cancer was localised in 34.7% of the lung cancer patients. There was no difference in stage distribution between patients from control or intervention GPs in the non-adjusted analyses. We found no difference in the risk of having localised stage when adjusting for non-compliance (RD: 1.5, 95% CI: -31.8-34.9, p-value=0.927).

3.4.4 General effects on other diagnostic strategies

The GPs referred 836 patients to the lung cancer fast-track pathway during the study period. Among these patients, 81 were diagnosed with lung cancer. This corresponds to a PPV for lung cancer diagnosis when referring patients to a fast-track lung cancer pathway of 9.7%. The proportion of patients with advanced disease was 59.3%, with no difference in stage distribution between patients from intervention and control GPs. The unadjusted referral rate to fast-track was 0.17 per 1000 adults listed with the GP per month (95% CI: 0.12-0.25) for intervention patients compared with 0.15 (95% CI: 0.11-0.24) for control GPs (p-value: 0.417). When correcting for non-compliance, we found no difference in PPVs between the groups (risk difference (RD): 1.1% (95% CI: -5.8-8.2, p-value: 0.740)), but a statistically insignificantly higher risk for having a low referral rate (below the lowest referral rate quartile) to the fast-track pathway for control GPs (RD: 6.3% (95% CI: -22.7-35.3, p-value: 0.670)).
CHAPTER 4:

Discussion of methods
This chapter addresses the strengths and weaknesses of the four papers by discussing the internal and external validity of the studies in relation to design, sampling, data quality, interventions, outcome measures and analyses.

4.1 Data validity

4.1.1 Design

4.1.1.1 The cohort study (Paper I)

In Paper I, we conducted a national registry-based cohort study encompassing the entire population of newly diagnosed lung cancer patients in Denmark. The data were collected in 2010 by a colleague at the Research Unit for General Practice, Aarhus University who used a validated sampling procedure (90) (see later). The data were collected as part of the Danish Cancer in Primary Care (CaP) project which aims to support epidemiological and health services research within the field of cancer diagnostics (90).

Questionnaire data in this study were collected retrospectively, which make them more vulnerable to bias (see later). A prospective cohort study will usually provide more detailed information on exposures and other key variables than the retrospective design (94). However, as GPs encounter only approximately one new lung cancer patient every year, it would not have been feasible to use a prospective design in which symptomatic patients were followed, milestones were registered and data on those who got cancer were extracted for analysis.

The strengths of this study were the unique Danish possibility for gathering nearly 1000 patients through a valid sampling procedure (90) and combining data on these patients with valid registry and questionnaire data.

4.1.1.2 The randomised controlled trial (Paper II)

In Paper II, we conducted a randomised trial on all patients referred from general practice to the existing fast-track pathway at one single department of pulmonary medicine. We chose a RCT design as it is in general regarded as superior to non-experimental designs for establishing the effectiveness of an intervention owing to its ability to minimise selection bias and information bias and, in particular, to control for confounding (95-97). Thus, the strength of this study was the randomised design that produced two comparable groups with no statistically significant differences. We were able to measure outcomes during one time period for two different organisations rather than making before-after-comparisons or comparisons between two settings.

We chose a simple randomising procedure based on the birth month of the patient referred. This was done to ensure that the randomisation process was as pragmatic as possible. The patients were randomised by one of two
chest physicians when they triaged the patients who were referred from primary care to the fast-track pathway. This randomisation process is also a potential weakness in the study. If GPs had been aware of the allocation of their patients, they might have used the diagnostic system differently. However, the GPs were unaware of the study; thus, the problem is probably non-existing in the present study.

4.1.1.3 The cluster-randomised, controlled trial (Paper III and Paper IV)
In Paper III, we choose to report outcomes from the intervention arm solely as a cohort study nested in the RCT. This was done to elaborate on the complex intervention and the outcomes of the LDCTs. The study is descriptive and provides only the results of the first scan. In order to measure the full impact gained by the direct LDCT option, a follow-up study is needed. This is necessary to obtain information on lung cancers diagnosed from the repetitive CTs on nodule follow-up indications, other diagnoses made, and the additional number of diagnostics needed as a result of the follow-up scans. The research group has planned to conduct a follow-up study two years after the baseline scan.

A major strength of this study is its well-defined study population and the large number of patients included. The data obtained from the referral letters and the CT records were complete as were the data on GP participation in the CME on lung cancer. However, a limitation is that we have no knowledge about the kind of diagnostic tool (e.g. chest radiograph or fast-track referral) applied by the GP if (s)he were allowed to refer to a direct LDCT.

In Paper IV, we chose the design of a cluster-randomised trial with GP practice addresses as the randomisation level. Compared with individually randomised trials, cluster-randomised trials require more participants to obtain equivalent statistical power because observations on individuals in the same cluster tend to be correlated (non-independent). This reduction in effective sample size depends on the average cluster size and the degree of correlation between clusters (i.e. how much patients listed at one GP correlate with patients listed at another GP) (92,98). However, we found individual patient randomisation non-suitable for this study because the intervention was targeted at the GP. If we had chosen to randomise at the individual patient level, one GP would potentially have patients randomised both to the intervention and to the control group. Nor was it possible to intervene at the single GP level because we anticipated a large risk of contamination (risk of spill-over) between GPs at the same practice address if one GP had the opportunity to refer directly to CT and another GP did not have this opportunity.

4.1.2 Sampling

4.1.2.1 Sampling of lung cancer patients (Paper I)
The lung cancer patients were sampled as part of a national cohort of all newly diagnosed cancer patients (except non-melanoma skin cancer) aged
18 years or older during a 4-month period from 1 May 2010 to 31 August 2010. During the inclusion period, cancer patients were identified consecutively from the Danish National Patient Register (NPR) (77).

A major concern in a cohort study is whether the cohort resembles the source population (99). However, the patients in this database were initially sampled using a predefined algorithm. This algorithm has been shown to have a high PPV for sampling incident cancer patients whose case-mix resembles the case-mix of the same year in the DCR (considered as gold-standard) (79).

In this study, patients were sampled from administrative registries. Alternatively, patients could have been sampled directly from hospital wards. This could potentially have increased the possibility of on-time inclusion of patients. However, such a sampling approach would have required massive personal resources. Its success would also depend on the individual hospitals’ willingness and ability to participate which would have entailed a considerable risk of incomplete sampling.

4.1.2.2 Sampling of patients referred to the existing fast-track pathway (Paper II)
Patients referred to the traditional fast-track pathway from general practice were sampled by a combination of the unique code for fast-track, DZ 031.B (lung cancer observation), and the referral code from primary care (the GP provider number). All patients with this combination were sampled during the study period (1 January 2012 to 1 December 2012). This sampling procedure was simple and easy to conduct. Some patients may have been referred from primary care to the fast-track pathway, but may initially have been seen at another department. Such cases would not have been sampled by the algorithm. However, these patients may differ from the standard fast-track referrals directly from primary care. The crucial issue is that the sampling procedure ensured that all patients were followed according to the number of performed CTs and lung cancer diagnoses. The CPR number was used to ensure precise follow-up on all patients.

4.1.2.1 Sampling of GPs (Paper III and Paper IV)
Before randomisation, we identified all practice addresses allowed to refer patients to the Department of Pulmonary Medicine, Aarhus University Hospital. This permission is held by all general practices located in the Aarhus municipality. GPs in the outer area of this district may have patients on their list who are living in other municipalities. These patients may therefore be referred mainly to hospitals other than the Aarhus University Hospital. In order to minimise this problem, we chose to exclude general practices in the outer area of the municipality. This helped ensure that we gained information on all patients from all randomised practice addresses. Furthermore, with this procedure, we were sure that all patients were diagnosed and treated at the Aarhus University Hospital, which, in
turn, ensured a homogenous patient care pathway for all patients included in the study. One the downside, this procedure decreased the number of included GP practice addresses which, finally, meant that fewer lung cancer patients were included in the study.

4.1.2.2 Sampling of lung cancer patients (Paper IV)

The outcomes at patient level in Paper IV were based partly on questionnaire data from the patients’ GPs and partly on data from registries. Thus, we needed to identify all newly diagnosed lung cancer patients from Aarhus University Hospital listed with both the intervention GPs and the control GPs. The aim of the sampling procedure was to make sure that all patients with lung cancer were identified, that no GP received a questionnaire concerning a patient who did not have cancer and, finally, that the questionnaires were sent to the GP as close in time to the diagnosis as possible in order to minimise the risk of recall bias (see later).

One approach could be to extract lung cancer patients from the DCR. Unfortunately, it is not possible to extract on-time information from the DCR due to its comprehensive quality control and validation procedures. Within a year, almost 90% of the tumours in the DCR are validated (79). Inversely, data in the NPR are on-time because the registry serves as a basis for the payment of hospitals. The validity of the data in the NPR has been examined continuously since reporting became mandatory in the late 1970s. Several studies conclude that minor misclassifications do exist in the NPR, but these misclassifications do not influence the overall validity of the NPR data (77,100-102). In order to minimise the risk of misclassification, we combined the data extracted from the NPR with the data extracted from the DLCR. The DLCR contains information from departments of thoracic surgery, pulmonary medicine and oncology. Each department is responsible for including patients in the registry, which is primarily done by physicians. Since 2003 the registry has covered more than 90% of all lung cancer patients in Denmark. Every month data were extracted from both the DLCR and the NPR. If the patient was included in both registries or in the DLCR alone, we sent a questionnaire to the patient’s GP. If the patients were listed only in the NPR, we used the patient hospital records to check whether the diagnoses were correct.

4.1.3 The intervention (Papers III and IV)

The intervention in Paper III and in Paper IV consisted of granting GPs direct access to LDCT and giving the GP an up-date on early lung cancer diagnosis (the CME). Initially, we wanted to test the two components of the intervention (CT and CME) separately in order to be able to separate the effects of the intervention, which would make interpretation of the results easier. However, two things made this approach impossible. Firstly, when planning the intervention, it became evident that offering the GPs a new diagnostic technology without offering some education in how to use this...
technology would be wrong and inefficient, and we would risk that the GP used the technology inappropriately or not at all. Secondly, a separation of the two elements of the intervention would imply that the RCT had to be designed with three arms. This would decrease the number of practice addresses in each arm and therefore the number of lung cancer cases, too, which would entail an increased risk of an underpowered study. One way to handle this problem could be to expand the study area. However, this would increase the risk that patients were diagnosed and treated at other hospitals which could potentially introduce bias. We therefore decided to unite the two components of the intervention into one arm, not only for the above-mentioned reasons, but also because we think this approach resembles the way such a technological upgrade would be introduced in a real healthcare setting.

4.1.3.1 The CME
A Cochrane review from 2009 concludes that educational meetings alone or combined with other kinds of interventions can improve professional practice and patients’ outcomes. However, the effect is most likely to be small (103). Another review on educational intervention for GPs designed to promote early diagnosis of cancer supports these findings (104). We chose to design the CME as small group meetings located at strategic places around the intervention area. The CME was interactive and included case stories for the GPs to discuss. The GPs were reminded about the meetings per letter a least twice, and some of the larger GP practices with many GPs were contacted to arrange meetings within the practice during lunch breaks. These initiatives were taken because existing research has found that strategies to increase attendance that use mixed interactive, various didactic formats and focus on outcomes are likely to be perceived as serious and may increase the effectiveness of the educational meeting (103).

The CME was completely voluntary. This implies that the clinicians who agreed to participate may have taken a special interest in lung cancer, and this group of GPs may already have performed differently from other GPs when diagnosing lung cancer. This would potentially underestimate the effect of training. We found that the patients from intervention GPs participating in the CME had much shorter diagnostic intervals than patients from non-participating GP practices. This either implies that the intervention was a success or that the intervention GPs who participated in the CME already performed better than the rest of the intervention group.

Unfortunately, only about half of the invited GPs participated in the CME and, moreover, the GPs who did were the ones who used the direct CT access. When adjusting for non-compliance, we induced a statistical power problem. The research group was unfortunately not aware of this problem when the study was planned, and we did not take into account that the number of patients should have been doubled at the least.
4.1.3.2 The LDCT
During the initial two months of the study, we used full-dose, contrast-enhanced MDCT (the same protocol as used in patients referred to the fast-track pathway) because we wished to use the currently best modality for lung cancer diagnosis. However, after these first two months, we had to change the modality and to use a low-dose MDCT. This change was primarily rooted in a need to speed up the investigations owing to a high referral rate at that time. The CE-MDCT is more time-consuming both as far as the scan is concerned and because it is necessary to prepare patients for the scan.

In retrospect, the LDCT should have been the first choice. In the research group, we are not aware of any studies comparing the sensitivity of CE-MDCT and low-dose MDCT for lung cancer. However, the CE-MDCT modality is superior to the LDCT for characterising an infiltrate in the lung parenchyma. In the present study, we wanted to provide the GPs with a diagnostic test that would disclose whether the patient referred had a lung infiltrate or not. In these cases, we know that the low-dose MDCT is much more sensitive than the chest radiograph which is the diagnostic tool currently available to the GP. If an infiltrate was observed by the low-dose scan, the next step was to order a CE-MDCT to characterise the infiltrate. Furthermore, in favour of the LD-MDCT speaks that this technology utilises a lower radiation dose than other modalities and that it may be conducted much more quickly than the MDCT. This makes the low-dose MDCT superior as a direct test (and also in screening), and the results of this study would have been less relevant if we had continued to use the contrast-enhanced MDCT.

There were no differences in CT outcomes according to lung cancer between patients scanned during the initial two months of the study and patients scanned in the rest of the study period (16 months). However, the number of lung diseases diagnosed with the CE-MDCT would probably have been higher than with the LDCT owing to the fact that the CE-MDCT has a higher sensitivity for detection of lung diseases, but, again, the number of lung disease detected by low-dose MDCT is higher than that detected by a radiograph with which it would be most obvious to compare our intervention technology.

4.2 Quality of data

4.2.1 Register data
The use of Danish registries for research has many advantages. The data are easy available, can be obtained at low costs and can be linked through the patient’s CRN. The registries are considered to have high completeness and patient data are considered to be valid. The present thesis discusses
the quality and the advantages of the individual registers in the chapters describing their use rather than in a separate section. However, some disadvantages will be mentioned here. In the DCR, the overall completeness of the TNM staging for NSCLC is high, but it decreases with increasing levels of comorbidity and at ages above 80 years (85). In Paper I, the completeness of data on stage was high; and we used a recommended algorithm to define stage in the presence of missing T, N or M values (85).

Furthermore, calculation of the CCI based on the NPR holds a risk of underestimating the degree of comorbidity as the patient has to have been admitted to the hospital for the ICD-10 code to be registered. This means that we have no information on patients with Charlson comorbidity conditions who were not diagnosed at a hospital. However, this concern seems to have little influence on the results as most of the diseases used in the CCI are so serious that the patients would have been seen at a hospital (86).

4.2.2 Questionnaire data

4.2.2.1 Paper I and Paper IV
The GP questionnaire used in Paper I was developed by a group of colleagues in 2010 as part of the CaP cohort (90) established by the Research Unit for General Practice, Aarhus University. There were no pre-designed questionnaires addressing the specific purpose of Paper I (cancer diagnostics) and Paper IV (lung cancer diagnostics in primary care), and they therefore had to be developed by the research groups. Whenever possible, questions and definitions from earlier questionnaires were used to enhance the validity of the new questionnaires. Items addressing symptoms, dates in the diagnostic pathways, reasons for delay and symptom interpretation have previously proved effective in describing a Danish population (26,27,90,105), and they were therefore used again. The content validity of the questionnaire was optimised in a pilot-test by GPs at the research unit. The use of a validated questionnaire or scales for determining especially the milestones would have strengthened the discussion of the validity of the results. However, no such instrument yet exists. On the other hand, we used items established by the research group (time intervals, milestones) on which there is international consensus (31). This makes the results as reliable as currently possible.

4.2.3 The focus group interview
In Paper II, we used a focus group interview to explore changes in the organisation of the fast-track pathway at the Department of Pulmonary Medicine in Aarhus. The method can be defined as “a research technique that collects data through group interaction on a topic determined by the researcher” (106). It is well established that the method is useful and effective when a researcher explores processes whereby a group jointly
constructs meaning about a topic (107,108). The focus group participants were two chest physicians and one nurse, all involved in the lung cancer diagnostic in the fast-track pathway. The aim of the focus group interview was to explore the pros and cons of the traditional versus the new organisation of the fast-track. This issue was explored primarily to ensure that we induced no harm that had not been duly considered when the new organisation was introduced.

Contrary to asking the staff at the department, we could have asked the patients examined through the fast-track pathway. This approach would have given us more precise knowledge about the pros and cons of the new organisation from the patient’s view. Adopting this approach, the challenge would be that because most of the patients are only examined in the fast-track pathway, they would not be able to compare the two different settings. We could also have asked patients from both settings and have compared their satisfaction with the diagnostics. This, on the other hand, would be time consuming and the results would probably be difficult to interpret.

4.3 Outcome measures and statistical analyses

4.3.1 Diagnostic intervals

In Papers I and IV, the primary care and the diagnostic intervals were calculated. Information about milestones in the diagnostic pathway was obtained from the GP questionnaires (except for the date of diagnosis, see later). This information could also have been obtained by reading the patients’ records. One advantage of such an approach would have been that the GP could not have interpreted the information they offered in the questionnaire in the light of his/her knowledge of the patient’s cancer diagnosis. Research indicates that the GPs interpret their medical records differently than a blinded researcher (109). However, resources for external coding of the medical records would have been very costly and it would have been very time-consuming.

The validity of the intervals is considered to be high because the intervals are calculated on the basis of factual dates that can be found in patients’ records and in registries. However, information on the intervals was restricted to the patients for whom the GP returned the questionnaire and for whom the GP was involved in the diagnosis. Several statistical methods can be used for imputation of missing data, but none of these methods were suitable in the present study because the missing data were factual and could not be estimated based on other factors. We instead included patients only with available dates in the analyses, which can introduce bias (see later).

An alternative approach to measure time in primary care could be to measure the number of contacts to the GP before diagnosis. The hypothe-
sis is that the more pre-diagnostic consultations, the longer the patient had to wait for the diagnosis (44,45). This may be misleading as 1) it would introduce a relative measure compared with others presenting to the GP, 2) it is arbitrary to use the number of consultations as some patients would need three contacts to be properly examined (e.g. three in a week) and some would have three consultations in a year, 3) it should be within a specific time interval and 4) it should be related to the cancer and not to other diseases. If the above-mentioned is not fulfilled, the connection between numbers of consultations and time may not be valid.

In Paper I, the date of diagnosis was defined as the day the hospitalisation or outpatient visit during which the diagnosis was made was initiated. This choice implies that the diagnostic intervals were shorter than if we had chosen the date of the histological diagnosis. However, as we wanted to examine the number of X-rays performed before the diagnosis and primarily those initiated by the GP, this definition increased the validity of the diagnostic activity by being truly pre-diagnostic.

4.3.1.1 Analyses
The time intervals were not normally distributed, and some intervals were very long. The mean allows the extremes to affect the results. All the time intervals (Papers I and IV) were therefore presented as median rather than as mean to prevent any overestimation. In Paper I, a cut point for long intervals was defined as the upper quartile in the group studied. Prevalence ratios were preferred to odd ratios which would tend to overestimate the associations as the prevalence of the outcome measure was above 20% (91).

In Paper IV, primary analyses were performed by the standard intention-to-treat principle with participants analysed according to their GP’s randomisation. Patients listed within the same practice are likely to share features; and in these analyses, we accounted for clusters of patients within GPs using cluster robust variance estimation. However, the clustering effect may be very small as the study GPs only had one or two lung cancer patients listed.

4.3.2 Diagnostic activity
In Paper I, we wanted to measure the diagnostic activity prior to the diagnosis of lung cancer. We used chest radiographs as a proxy for the activity. One limitation concerning the radiographs was that we had no indication as to why they were performed. Thus, we may have overestimated the diagnostic activity as some of the radiographs may have been conducted due to congestive heart failure, for example. Still, also in these instances, many GPs would intend to rule out the possibility of cancer, too. Some of the radiographs may have been repeated to rule out false negative radiographs, while others may have been repeated on rational, clinical grounds.
4.3.3 Chest physician time

In Paper II, we measured time per patient spent by the chest physician. One limitation was that we only measured time for a sample of the patients. We chose this approach to approximate the time spent per patient in a period in which the two different kinds of organisation had been running for some time, and we believe that this time per consultation was stable throughout the entire study period.

4.3.5 Patient characteristics and CT outcome

In Paper III, we calculated the duration of symptoms. The information was obtained from the GP referral notes. The GPs were told to describe symptoms, smoking habits and known lung diseases in the notes. The referral notes differed somewhat in how many details the GP presented which is a limitation when interpreting the results. Another approach could have been to obtain the information by asking (either by interview or a questionnaire) all patients referred to direct CT. If we had done so, we would probably have obtained a more detailed description of the patients, and we could have examined patient satisfaction with the direct CT. However, this procedure would have been much more time consuming and more expensive. One concern was that if the GPs were responsible for handing out the questionnaires, they could find this inconvenient in a busy schedule and they would therefore maybe have more reluctant to refer patients.

4.3.6 GP variation and use of fast track

In Paper III, the referral rate to LDCT was measured for all GPs and, additionally, only for GPs who used the referral option (excluding the GPs who had no referrals to the direct CT, the zero count GPs). The latter was done under the presumption that most of the zero count GPs probably never would use this opportunity within the study period. We wanted to estimate the highest use of the direct CT scans as we would expect it to be if the opportunity was implemented in Denmark. We believe that the real use of the CTs, if implemented, is more accurately estimated when the zero count GPs are not included.

4.3.7 Stage at diagnosis of lung cancer

Stage at diagnosis in Paper I was obtained in the DCR, whereas information on stage in Papers III and IV was obtained from the DLCR. This was done based on the fact that contrary to the DLCR, the DCR, as mentioned above, does not contain on-time information. If we had decided to use the DCR, we would have had to wait for the information to be validated and that was outside the time limits of this PhD study. One the other hand, we have no knowledge that the data regarding staging should be less precise in the DLCR than in the DCR.
As mentioned in the methods section, the two registers differ in the way the TNM is defined. The DLCR contains only one TNM stage (which can be either cTNM or pTNM), while the DCR contains both cTNM and pTNM if available. This implies that the stage distribution between Paper I and Paper IV is not directly comparable as approximately 10% more patients will have an early-stage lung cancer in the DLCR than in the DCR. This issue does not seem to represent any particular problem as long as data for comparison of stage is gathered from either the DLCR or the DCR.

4.4 Statistical precision

4.4.1 Power calculation

In this thesis, we aimed to test whether direct CT access from general practice combined with a lung cancer CME would decrease the diagnostic intervals. In 2008 half of the Danish lung patients waited 33 days or more (the median) from their first presentation to primary care until diagnosis of lung cancer (27). In the research group, we discussed what would be a clinically relevant decrease in time; a difficult subject to measure as the time for a possible stage shift in lung cancer is unknown. Ultimately, we wanted to be able to show a decrease in the diagnostic interval to a level where only 25% of the patients had to wait for 33 days or more. Thus, the proportion of patients waiting 33 days or more should be halved. With a one-sided alpha of 5% and a power of 80%, we had to include 54 lung cancer patients in each arm with a 1:1 randomisation.

It can be assumed that lung cancer patients are randomly distributed among GPs. However, the incidence of lung cancer could be higher in some areas with many smokers and in practices with many elderly patients. To account for an unknown intracluster correlation coefficient (ICC), we included a design effect of 1.25 (92). In this way, we were able to account for the fact that individual subjects can choose a specific practice, and this may result in a within-practice correlation of characteristics such as age, gender or ethnic group. The ICC on 0.25 was based on previous research of cluster-randomised trials in primary care (110). Given the design effect, we had to include a total of 54*2*1.25 = 135 lung cancer patients with questionnaire data and GP involvement in the diagnosis. Unfortunately, only approximately half of the intervention GPs participated in the CME. The power measurements should therefore have been at least doubled. However, the Aarhus municipality was chosen because the study area had to be sufficiently large to accommodate the variance of the outcome and the risk of random errors (96), but also sufficiently small to ensure precise follow-up and homogenous patient pathways. Furthermore, the length of the study period was primarily given by the length of the PhD study period.
Discussion of methods

4.5 Internal validity

4.5.1 Selection bias

Selection bias is the systematic difference between the group selected and the full group from which the selected study group stems (94). Descriptive studies are vulnerable to selection bias that arises from the procedures used to select subjects and from factors that influence study participation. This type of bias is likely in case-control and retrospective cohort studies because both the exposure and the outcome have occurred by the time the subjects are selected.

In Paper I, the risk of selection bias was minimised by sampling patients from valid registries independently of their GPs and the hospital wards. The questionnaire response rate among GPs was 71.1%, which is very satisfactory. The high response rate reduced the potential for selection bias. GP-induced selection bias was possible if patients of non-responding GPs had different diagnostic intervals than patients of responding GPs. If non-responding GPs were reluctant to respond because of long primary care intervals, our results are underestimating the actual intervals, thereby leading the estimate towards the null hypothesis. On the other hand, it might be that non-responding GPs were uninvolved in the diagnostic pathway more often than responding GPs. If that is the case, the diagnostic intervals may be shorter because those patients are diagnosed in hospitals in connection with another disease which would make us overestimate the overall intervals. Given this, it is difficult to predict the direction of the bias due to selection.

In Paper IV, a high response rate among the GPs of 81.0% minimised the risk of selection bias. This is supported by the fact that the lung cancer patients were quite similar regardless of whether they were listed at control GPs or intervention GPs. However, patients who were not included due to GP non-response may differ from patients of responding GPs in respect of diagnostic intervals, as discussed above. The GPs in this study had an economic incentive to participate as they received compensation for completing the questionnaires. This probably influenced their response rate, but not the estimated delays.

4.5.2 Information bias

Information bias is a flaw in measuring exposure, outcome data or confounding that results in variable quality (accuracy) of information between comparison groups. The most pronounced risk of information bias in this present thesis is that of GPs’ recall bias when responding to the questionnaires used in Papers I and IV.

The retrospective nature of the questionnaire-based studies (Papers I and IV) makes them prone to recall bias. Recall bias will affect both the accuracy of
the data (e.g. dates) and, in Paper I, the categorisation of patients according to initial symptom presentation and the symptom interpretation. The GPs were encouraged to consult their electronic patient files when completing the questionnaire to reduce potential information bias. Danish GPs are legally bound to keep detailed medical records of their patients; this includes data on laboratory test results and hospital discharge letters (111). Knowing that the patient was diagnosed with lung cancer may have influenced the GPs’ answers when they stated the dates in the cancer care pathway, and it may have shaped their recollection of the patient’s symptom presentation and their evaluation of the care pathway. In Papers I and IV, recall bias may occur if GPs intentionally downplay the delay when feeling responsible for the outcome. This implies that the intervals we report are the minimum intervals. Furthermore, in Paper IV, recall bias may occur if GPs in the intervention group, who participated in the CME, estimated the intervals longer than the control GPs because they had recently received an update on lung cancer symptoms and because of the increased awareness of such symptoms in the daily practice. If the intervention GPs report long intervals because of increased awareness, this will equalise the possibly faster diagnosis owing to the intervention. This bias will underestimate a possible effect of the intervention on the two intervals and could be the reason for the non-significant difference in the primary care interval between groups.

A source of information bias in Paper III may be the referrals notes. The GPs who participated in the CME may fill in more accurate details about the patients referred than the GP who did not participate (a source of possible differential misclassification). On the other hand, the CME-participating GPs were also mostly the ones who used the direct CT option, which makes the problem a minor one.

4.5.3 Confounding

A confounder is a factor that is a risk factor for the outcome and associated with (unevenly distributed), but not a consequence of the exposure. Confounding is most simply defined as the mixing of effects between an exposure, an outcome and a third extraneous variable known as the confounder (94). Randomisation is a mean of controlling for both known and unknown confounders because possible confounders are evenly distributed.

In Paper I, the effects of gender, age, education, comorbidity and marital status on the diagnostic intervals were mutually adjusted. The effect of the GP’s symptom interpretation and use of the fast-track pathway on the diagnostic intervals were adjusted for gender, age, education, comorbidity and marital status. In addition, there might be residual confounding due, e.g., to GP or patient characteristics about which we had no information. However, we have no reason to believe that this residual confounding is unevenly distributed between the groups.
In Paper III, we choose not to adjust for any confounding variables when examining the difference in the proportion of cancers found through the usual fast-track evaluation between the CME participating GPs and the non-participating GPs. The number of lung cancers in a population depends primarily on smoking and age. We measured the proportion of all lung cancers diagnosed through the fast-track pathway. If we had adjusted for smoking and patient age, for instance, we would also have adjusted for the causal variables in getting lung cancer. The comparison of the CME-participants and the non-CME-participants in terms of the GP referral rate to direct CT was adjusted for the GP list gender and age composition because the risk of getting lung cancer increases with increasing age. GPs with many old patients listed will have more consultations regarding symptoms that could indicate lung cancer, which would increase the referral rate for examinations.

4.6 External validity

4.6.1 Generalisability

In Paper I, we included a well-defined national study population of considerable size. In the light of the above discussion of selection and information bias, we believe that our sample of lung cancer patients is a random selection of the general lung cancer patient in Denmark. Thus, these patient’s symptoms, routes to diagnosis and delays are comparable to those of the general lung cancer patient in Denmark. Extrapolation of the results to other countries requires careful consideration of the differences in organisation of the healthcare systems. However, the results of the present study may likely be generalised to other countries where GPs act as gatekeepers to the rest of the healthcare system and where fast-track systems are used for fast cancer diagnoses (e.g. within the other Nordic countries or the UK).

In Paper II, we included all patients referred from primary care to fast-track evaluation at a single department of pulmonary medicine. Whether these patients resemble patients referred to fast-track pathways in other parts of Denmark is partly unknown. However, as GPs in Denmark follow national guidelines when referring patients to fast-track diagnosis and treatment, we would argue that the sample is similar to the general patient population referred to a lung cancer fast-track pathway. One consideration is whether the change in organisation in this study is transferable to other settings. The findings should be interpreted carefully since outpatient clinics are organised differently in Denmark and around the world. Still, the decrease in the use of specialist time may be generalised to other departments.

In the Papers III and IV, this Danish single-setting, randomised, controlled trial with complete inclusion of patients holds the opportunity to general-
ise the characteristics of patients included to the general patient presenting to the GP with symptoms/signs of lung cancer (Paper III) or the general Danish lung cancer patient (Paper IV). Furthermore, the interventions conducted in this study are transferable to daily clinical practice around the country with only small organisational changes; and the experimental condition in these studies can be considered almost analogous to everyday conditions in the primary and the secondary healthcare system. Furthermore, we do find that the results may apply to other countries and settings in which general practice serves as the first line of healthcare.

4.7 Ethics/Harms

Careful consideration was given to the ethical aspects of the randomised study reported in the Papers III and IV. The CT scan is a widely used technology and the pros and cons of this diagnostic modality according to lung cancer diagnostics have been thoroughly examined in screening studies. On the contrary, these aspects have not been examined for LDCT used as a case-finding tool in general practice.

For lung cancer, CT has a high sensitivity, but a lower specificity. This implies that the method involves risk of patient distress because of a relatively high number of false positive scans. On the other hand, patients suffering symptoms and signs that could indicate lung cancer are at risk of distress as well; distress that may be eliminated by a fast, direct, thorough test showing no signs of cancer.

Furthermore, the size of the radiation dose and the risk of cancer secondary to radiation from the LDCTs and subsequent imaging used to evaluate positive screens were discussed. A US study from 2013 addresses this problem in connection with LDCT screening studies (58). Based on epidemiological data on radiation exposure, the authors calculate that assuming an annual LDCT from the age of 55 to age 74 (20 scans), the lifetime attributable risk of lung cancer mortality is estimated to be 0.07% for males and 0.14% for females. Furthermore, the radiation from one single LDCT amounts not even to half of the total annual radiation exposure from natural and human made sources. In addition, patients belonging to the group of patients referred to a LDCT may have a higher risk of having lung cancer or other important diseases, and the small radiation dose may contribute only very little to the other risks these patients are facing. Bearing these facts in mind, we did not find the radiation dose exposure to be a source of major concern.

Other considerations were based on how the responsibility for the patient changed throughout the examinations. Within the research group, there was a strong wish to place the responsibility for the patient with the GP. By letting the GPs keep the responsibility for the patient, we hypothesised
that more GPs would use the direct CT possibility. We wanted to be sure that if the patient after the CT scan needed further examinations in secondary healthcare, the GP would, indeed, refer the patient to the correct department. This would happen only if the CT reports were of good quality. We discussed this issue in the research group and decided that all CT descriptions should contain a plain description combined with a conclusion with precise instruction to the GPs. Furthermore, at the CME meeting, we encouraged the GPs to make follow-up appointments with the patient a few days after the CT referral to make sure that the result of the scan and the possible implications were immediately discussed with the patient.
The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial
CHAPTER 5:

Discussion of results
5.1 Pathway to diagnosis, diagnostic intervals and diagnostic activity
(Aim 1)

5.1.1 Pathway to diagnosis

Two thirds of all newly diagnosed lung cancer patients forming part of the patient cohort in Paper I were seen in general practice before diagnosis, and a quarter of these patients were diagnosed from general practice through the fast-track route. Our findings are comparable to the findings of a British retrospective study including 220 lung cancer patients (40) in which 61% were seen in general practice. In line with our results, another British study from 2012 found that 24% of the lung cancer patients were diagnosed through a fast-track referral (55). However, in the latter study, 39% of the patients were diagnosed through emergency routes compared with 6% in our study. This difference could be explained by the algorithm used to identify pathways since we were able to detect whether the patients were already registered in a hospital-based pathway or not. This is supported by a British study from 2007 with results similar to ours where emergency referrals accounted for 5% of the cases and fast-track referrals for 23% of the cases (56).

5.1.2 Diagnostic intervals

For the newly diagnosed lung cancer patients, the overall median primary care interval was seven days (IQI 0-30), whereas the median diagnostic interval was 29 days (IQI: 12-69). The length of the diagnostic interval was associated with patient age and with the GP’s interpretation of symptoms and referral to the fast-track pathway. Patients with advanced disease had statistically significantly shorter median diagnostic intervals than patients with localised disease. This contra-intuitive association (the waiting time paradox) has been found in many observational studies as well; patients with short diagnostic intervals have more advanced stage and a higher mortality than the rest (112,113). Illustrating this paradox, many studies take the results to show that there is no association between delay and mortality (114). However, this association could be caused by confounding by indication based on differentiated clinical triaging (115). The bias arises when a GP gives priority to the seriously ill patient, whereas (s)he is more reluctant to refer the not so obviously ill patient (41). Furthermore, in most cases patients presenting with advanced disease at the hospital need fewer examinations to obtain a diagnosis (e.g. a biopsy from the liver as the only examination), while more diagnostic tests are needed in patients with localised disease. In 2013, a Danish study addressed this problem and found a u-shaped association between length of diagnostic interval and mortality for five common cancers (including lung cancer)(109). These results provide evidence for the hypothesis that longer diagnostic intervals cause higher mortality in cancer patients. Thus, the data on which factors result in long intervals (i.e. high patient age, presenting with unspecific symp-
toms and GPs not referring to the fast-track) provide important knowledge for healthcare planning in general and for a shortening of the clinical pathway and thereby an improvement in prognosis in particular. Lung cancer patients are often elderly and many present with unspecific symptoms. Furthermore, only a quarter of the patients are diagnosed through the fast-track route from general practice which implies that many patients are at risk of experiencing long intervals.

A British study in 2008 (40) reported a much longer primary care interval than the present study (primary care: 51 days (interquartile range: 17-165)). As discussed previously, this difference can be explained partly by different study designs. We obtained data on milestones in the diagnostic pathway through GP questionnaires, whereas the British study used research assistants to scrutinise medical records for nine predefined lung symptoms. There is a risk that intervals may be underestimated when we ask the GPs to report the date the patient presented with a symptom that could be due to cancer. One the other hand, there is also a risk of overestimating the length of intervals when going through the GP records searching for the first date a predefined symptom was reported. The true interval properly lies somewhere in between. The impact of this difference in study designs has also been shown for colorectal cancer (109).

A Danish study from 2006 (26), i.e. prior to the introduction of fast-track referral in Denmark, reported longer median primary (29 (IQI: 10-63)) and secondary care intervals (58 (IQI: 42-70)) than demonstrated in the present study. This may indicate an effect of the introduction of fast-track pathways and/or the increased focus on early cancer detection.

5.1.3 Diagnostic activity

In Paper I where the data are from 2010, we found that 87% of all the patients had at least one chest radiograph and 34% had at least two during the 12 months immediately before diagnosis. This is slightly more than in a British study from 2005 where 164 of 247 (66%) lung cancer patients had at least one chest radiograph requested from primary care in the year before the diagnosis (51). This may imply an increased use of X-rays in Denmark compared with the UK. However, the difference may also just be due to different study designs or to changes over time.

The more frequent use of chest radiographs among patients diagnosed through the fast-track than through the non-fast-track route may indicate that GPs’ decisions to order chest radiographs are not rooted only in their symptom appraisal but may serve a strategic purpose, viz. to pave the way for access to the fast-track route. In light of the rather large risk of false negative chest radiographs this behaviour may in the end lead to delayed diagnosis. Patients, who were not referred from primary care to the fast-track route were more likely to have either none or more than two X-
rays compared with patients referred to the fast-track route. Furthermore, if the GP interpreted the symptoms as ‘serious, but unspecific’, a higher proportion had two or more radiographs conducted. This may imply that these patients are more difficult for the GPs to diagnose or that the initial diagnostic activity did not reveal the lung cancer. Moreover, almost half of the patients admitted as acute patients had two or more X-rays, which could indicate that these patients were, indeed, seen and investigated in primary care without finding the cancer.

At least one third of the patients had two or more chest radiographs during the three months prior to the diagnosis, and some of these additional radiographs may have been taken because the first ones were false negative. This finding confirms previous research (26,50,51) and indicates a need for a more critical use of radiographs for patients suspected of having lung cancer.

Of all lung cancer patients, 15% had no radiographs, and the seeming lack of diagnostic activity before the diagnosis could be explained by patients not being seen by their GP or the patient’s and/or the GP’s unawareness of signs and symptoms. A British interview-based study found that patients extensively framed their symptoms of lung cancer as “normal features of lifestyle and ageing processes” which may cause them not to visit their GP or not to tell their GP about the symptoms (22).

5.2 Number of performed MDCTs and chest physician time (Aim 2)

In the randomised trial presented in Paper II, we found no differences in the use of CT scans when comparing the new straight-to-CECT scan scheme with the traditional organisation in which a chest physician saw the patient before the CT scan was performed. There was a decrease in time spent per patient. The new organisation was highly accepted and, according to the staff, it also improved the patient’s experience.

A few studies have analysed the effect of straight-to-test vs. traditional referral to secondary care. A British retrospective comparative study from 2011 found that straight access to CT scan after an abnormal radiograph reduced the diagnostic interval without significantly increasing the overall proportion of patients undergoing CT scans (from 87% before to 92% after) (116). Similar results were found in a study from the Netherlands in 2011 (54), where open access to colonoscopy from primary care was found to reduce the diagnostic interval with only a minor increase in the number of endoscopies.

A British study from 2009 rejects a straight-to-test system. This prospective study on patients referred through a fast-track route for colorectal cancer found that the requested test types as entered in the GP referral letters were
Discussion of results

changed after an outpatient visit in 31% of the cases (117). This is contrary to
the findings in this present study in which reading of the GPs’ referral notes
showed that the chest physicians were able to select only 3-4% of patients
for whom a CT scan was found to be unnecessary. This implies that the GPs
were, indeed, able to select patients properly for CT scans.

5.3 Usage of LDCT and fast-track, outcome of the LDCTs (Aim 3A)

5.3.1 Use of LDCT and fast-track pathway.

In Paper III, two thirds of the GPs used the direct access to LDCT. CME-
participating GPs had a 61% higher LDCT referral rate than non-particip-
ating GPs. In terms of variation, we found no association between GP
characteristics (age, gender, type of clinic, list size or levels of deprivation)
and the use of CT. A review from Scotland (118) concluded that varia-
tion in GP referral rates in general is largely unexplained. The study sug-
gests that GPs with an interest in or training in a particular field had a
higher referral rate in that specialty. This may explain the higher referral
rate among GPs who participated in the CME. However, we can make no
causal inference as these findings may be influenced by selection bias.

During the study period, 648 patients were referred to a direct CT. The
most prominent referral symptom was coughing with a median dura-
tion of two months. The mean patient age was 62 years which is slightly
younger than the mean age of Danish lung cancer patients (66 years).
Slightly more referred patient were never smokers compared with patients
diagnosed with lung cancer. As we have no knowledge of how the scans
were introduced to the patients by their GPs in the consultation room, we
do not know if this difference arises because the GPs were more willing
to refer the slightly younger patient or if a larger number of older patients
decided to have the CT scan performed. However, a similar participation
bias is also seen in the Danish lung cancer screening trial where people
volunteering to participate differed substantially in terms of socio-demo-
graphic and psychosocial factors from a matched sample of heavy smokers
from the general population (119).

Opposite the screening trials, inclusion in our study embraced a wider
population. By limiting GP access to the LDCTs with specific criteria (e.g.
smokers or age above 50 years), the proportion of lung cancers diagnosed
in our study would probably have been higher. However, the non-limited
access shows the actual use and outcome if the direct access is going to be
implemented without referral criteria.

CME participation was not associated with an increased use of the exist-
ing lung cancer fast-track pathway. However, CME participation was
associated with a PPV that was more than twice as high as in intervention
GPs who did not participate in the CME. This finding runs counter to our CME hypotheses. We cannot make any causal inference of the associations found as these may simply arise because we compared two essentially different groups of GPs. It is, however, interesting that CME and direct CT seemed to change the GPs’ referral patterns, and this may imply that the GPs use the direct CT option for the low-risk patients, whereas they use the fast-track route for patients who are at a higher risk of having cancer.

5.3.2 Outcome of CTs

In Paper III, symptomatic patients consulted general practice, and the GP referred them to a direct LDCT. We found that 64% of the scans were abnormal, and half of the patients needed further diagnostic work-up. Furthermore, we found that 2.3% of the patients were subsequently diagnosed with lung cancer; 60% in early stage (TNM: I and II). In a US screening study (NLST) including participants aged 55-74 with at least 30 pack-years, 1.1% had lung cancer at baseline (59). The authors reported 55% stage I cancers compared with 40% in our study. In the screening study, 27.9% of the patients needed follow-up scans. This is comparable to our numbers. Similar results were seen in the Danish randomised lung cancer CT screening trial (DLCST) (120), which included participants aged 50-70 with at least 20 pack-years; 0.83% of the participants were diagnosed with lung cancers (68% in stage I). The fact that we found 40% stage I cancers in symptomatic patients can be due to an increased awareness of early signs of cancer among GPs in combination with easy access to a direct test. It may also be caused by the high sensitivity of LDCT for detection of small lung cancers. These small tumours may not have been detected with a standard chest radiograph, and the test would then have been false negative. This implies that the direct CT from primary care could be an effective tool for diagnosing lung cancer in earlier stages.

LDCTs may also be used to diagnose other lung diseases than lung cancer. The diagnosis of such lung diseases (e.g. tuberculosis, chronic obstructive pulmonary disease (COPD) or interstitial lung diseases) is an important issue in Danish healthcare. For example, COPD remains a major public health problem, and studies have shown that early intervention is of great importance (120). Drawing on multiple scans conducted in connection with the Danish lung cancer screening study, a Danish study from 2012 found that LDCT is, indeed, able to characterise the presence of early emphysema (121).

5.4 Time to diagnosis and stage at diagnosis (Aim 3B)

5.4.1 Time to diagnosis

In Paper IV, we found no statistically significant difference in the primary care interval or the diagnostic interval between patients listed...
with the control GPs and patients listed with the intervention GPs. Just about half of the invited GPs participated in the CME. The correction for non-compliance addresses this problem, but the analyses increase the uncertainty of the estimates and the study may hence be underpowered. Still, the risk of experiencing a long diagnostic interval was 13% higher in the control group than in the intervention group that also participated in the CME. This means that CME combined with direct access to CT may have expedited the diagnosis; however, a larger study is needed to fully evaluate the effect as we cannot falsify that there was no effect. The intervention GPs in this study were offered CME. Those who agreed to participate may have been more interested in lung cancer, and this group of GPs may already have performed better than those who did not participate when diagnosing lung cancer. This would potentially have underestimated the effect of training if our results were generalised.

In Paper IV, the median primary care interval was 16 days. This is longer than the median primary care interval calculated in Paper I (median 7 days, IQI: 0-30). Whether this means that the diagnosis of lung cancer was less expedite in 2012-2013 than in 2010 remains unknown, but we suggest that it may rather be because of increased awareness of lung cancer symptoms and early diagnosis and therefore an earlier ‘first symptom presentation’-date listed in the questionnaire.

5.4.2 Stage at diagnosis

Using LDCT, we detected 40% of cancers in stage 1. However, a high frequency of early-stage cancers is not advantageous in itself. It is only beneficial if it is accompanied by a decreased frequency of detection of late-stage cancers. This issue is debated when discussing screening. In the Danish lung cancer screening trial, a relative stage shift was found (the proportion of early-stage cancers diagnosed grew), but no absolute stage shift was observed (a smaller proportion of late stage cancers was not diagnosed) (70). This could to some degree be a sign of ‘overdiagnosis’, viz. diagnosis of cancer that never would have progressed to clinical disease during a person’s lifetime and thus would not have been identified without the screening (70,122,123). However, it is questionable whether the issue of overdiagnosis is a real problem in the present study. At the time where a patient visits the GP due to signs or symptoms, the cancer has progressed to clinical disease, and the subsequent cancer diagnosis may thus not be categorised as an overdiagnosis.

We found no difference in stage at diagnosis between the intervention and control group patients. As lung cancer develops over a period of many years, a study period of 19 months may not have been sufficiently long to demonstrate the shift in stage towards more localised cancer detectable by CT.
5.4.3 Change in fast-track use and PPV for lung cancer

The intervention group referred statistically insignificantly more patients to the existing fast-track pathway than the non-intervention group, but the PPV for lung cancer (within the fast-track) was identical in the two groups of GPs. This may indicate that CME has a positive effect by encouraging the GPs to refer more patients to expedite investigations. The PPV (in the fast-track) was equal across all intervention and control GP groups although direct LDCT was an option, which may suggest that the intervention GPs are able to identify more patients at risk of cancer, maybe because of a greater awareness of lung cancer signs and symptoms.

The frequency of lung cancer detected by LDCT was 2.3% compared with approximately 10% for the existing fast-track route found in this study. This indicates that the patients referred to a direct CT formed a subgroup of patients with less pronounced symptoms and thus at a lower risk than patients whose symptoms were due to lung cancer. This group of patient is theoretically the group that we wanted to find using direct CT scan. Patients with “low, but not no risk” may be the ones most GPs find difficult to handle in primary care (72), and they are exactly the ones for whom the best strategy may be a direct, valid test performed with the GP as the responsible part.
CHAPTER 6:

Conclusion, perspectives and implications
Referring to the aims of the present thesis as stated in Chapter 1, page 38, this chapter summarises the overall conclusions. Furthermore, the perspectives and implications of the main results are discussed.

6.1 Pathways to diagnosis, diagnostic activity and diagnostic intervals (Aim 1)

Two thirds of lung cancer patients were seen in general practice before diagnosis, and Danish lung cancer patients follow several routes to diagnosis. Only a quarter of lung cancer patients were diagnosed directly from general practice through the fast-track route. Furthermore, 9 out of 10 of all lung cancer patients had a radiograph performed before receiving their diagnosis, and one third of the patients had two or more radiographs within the last 90 days before being diagnosed with lung cancer. The GP estimated that the primary care interval exceeded one month in 25% of the lung cancer patients. The diagnostic interval exceeded 69 days in 25% of the patients. The length of the diagnostic interval was associated with patient age, GP interpretation of symptoms and the referral pathway.

6.1.1 Perspectives and implications

Most lung cancer patients begin the diagnoses in general practice. Even though the median primary care interval is only 1 week, one fourth of all patients waited 1 month or more before being diagnosed. In order to shorten the delay in primary care, it may be necessary to help the GPs become better at investigating and interpreting early cancer symptoms, for example through continuous medical education (CME) or by allowing them to draw on a wider range of diagnostic options. These results are important for the organisation of the healthcare system. For the secondary sector, the advantage of the fast-track system lies in standardisation of diagnostics and close monitoring of time. For the primary sector, however, the fast-track pathway may be less optimal because only a minority of the patients present with alarm symptoms justifying the fast-track referral. One solution to this apparent dilemma may be to offer general practice access to more sensitive direct tests. Furthermore, radiographs are often repeated in patients, which suggests that there is a need for access to better diagnostic tools (e.g. LDCT scans) than those currently available to primary care (viz. radiographs).

6.2 Number of CT scans, chest physician time spent and satisfaction with the fast-track pathway (Aim 2)

Adoption of a strategy of straight-to-test with contrast-enhanced MDCT for patients in the lung cancer fast-track pathway was associated with a reduction of chest physician time per patient and with an increase in levels of staff acceptability, but the overall number of performed CTs remained the same.
6.2.1 Perspectives and implications

This study opposes the idea that patients referred to special diagnostics at the hospitals need to be seen by a hospital physician before the diagnostic test. Such double-gate-keeping may be ineffective and time-consuming. These results may be important for the organisation of other outpatient’s clinics. In addition, the study implies that GPs are able to select patients properly for fast-track CTs.

6.3 Usage and outcomes of low-dose MDCT, time to diagnosis and stage (Aim 3)

The direct, LDCT option was used by two thirds of the GPs. We found an association between participation in CME and the use of LDCT. Half of the referred patients needed additional diagnostic work-up, and 2.3% were diagnosed with lung cancer with a favourable stage distribution.

No statistically significant difference was found between the primary care interval and the diagnostic interval. However, when correcting for non-compliance, we found that patients were facing a higher risk of experiencing a long diagnostic interval if their GPs were in the control group than if they received CME. We found no difference in stage at diagnosis between patients listed with the control and the intervention GPs.

6.3.1 Perspectives and implications

These results imply that GPs will only truly benefit from the introduction of new diagnostic technology if they are taught how to use it. The fact that half of the patients needed further diagnostic work-up is also an important point that should be considered before a possible introduction of new technology. Furthermore, in light of the large number of patients who are diagnosed with serious lung disease or cancer (lung or other) by means of LDCT, this modality may also be considered a future diagnostic tool in primary care. Even for the group of patients presenting with symptoms or signs in primary care, many of the lung cancers diagnosed by the LDCT were low-stage cancers. This provides hope for finding ways to diagnose lung cancer earlier in primary care. One major challenge of using the LDCT is the frequent finding of nodules needing follow-up scans even though the cancer PPV is very low. Much research is currently being conducted to assist clinicians in distinguishing between benign and malignant nodules. If such research succeeds, the potential for direct LDCT from general practice would increase.

The fact that we found no significant outcomes measure to support the implementation of direct CT in the randomised trial may be rooted in a design problem. The results from Paper III are encouraging, and they are
important for any further discussion about direct-to-test referral from primary care. Direct access to LDCT scan may be an alternative to lung cancer screening. Furthermore, if a LDCT screening program was going to be implemented, one consideration could be to expand the program by granting GPs the opportunity to directly refer symptomatic, non-screened patients to CT.

The frequency of lung cancer detection by LDCT is lower than we initially expected (2.3%). In addition, it is lower than the frequency of detection of cancers in the fast-track pathway (10%). The question therefore remains, what is the right frequency / PPV for cancer diagnostics? Based on very low PPVs for lung cancer symptoms in primary care, how high a PPV can the secondary sector demand? If we want the GPs to refer and investigate the not-so-obviously-ill patients, more patients will have to be investigated. The question that begs an answer, not by the research group but by health decisions makers, is accordingly whether the frequency (and derived advantages) of such an approach will outweigh its costs.

It is possible to take a very nihilistic view that all NSCLC biologically are low-grade tumours, and that patients with such tumours would not have survived almost whatever treatment they had, or had not, received. We may only speculate as to the existence of a group of patients with comparatively speaking less aggressive lung cancer that may be susceptible to cure if identified early, but which are not curable if identified late. However, long-term survival is not the only consideration when trying to improve lung cancer diagnosis: late diagnosis usually imposes a serious strain on patients and their relatives. Not only does the lateness of diagnosis obviate radical treatment options, it also prevents recruitment of appropriate medical and social inputs, including options that may optimise symptom control and the planning of care and which will afford the patient and his or her family with enough time to adjust to the diagnosis.
CHAPTER 7:

Future research
The results of the present thesis invite further research into a number of areas as outlined in this chapter.

The fact that lung cancer patients are seen in primary care before diagnosis calls for further studies of the clinical trajectory in primary care to explore the unique patterns of the initial steps in cancer diagnosis. Such research could target the pre-diagnostic activity in the years before diagnoses, for example by quantifying the number of consultations, lung functions tests, X-rays and prescriptions of lung medicine in lung cancer patients compared with a matched comparison group. A comparison of the above-listed activities between lung cancer patients with regional or distant disease or between patients with or without a chronic lung disease would also be interesting. The potential is to help GPs become better at assessing the risk of lung cancer in primary care, which may ultimately improve the lung cancer diagnostics in general practice.

The positive results obtained owing to the current fast-track cancer pathways (Paper II) invite further studies deploying a straight-to-test strategy in other cancer fast-tracks pathways, e.g. the colon cancer fast-track pathway with direct to colonoscopy.

The results of Paper II concerning a straight-to-test from primary care strategy encouraged the Department of Pulmonary Medicine, Aarhus University Hospital, to change their fast-track organisation. As from December 2012, all patients referred from general practice to the lung cancer fast-track pathway are now CT scanned before the chest physician outpatient visit. A study should be performed to evaluate the organisational change and to test whether the GPs are now using the fast-track option differently from before this organisational change, e.g. if the stated indications for the scans have changed. This will be measured by comparing fast-track referrals and PPVs in the fast-track before and after the reorganisation.

Furthermore, a follow-up study encompassing the 648 patients scanned with direct LDCT has been planned. It is expected that this study will be able to quantify the additional diagnostic work-up needed after the first CT and that it will be possible to calculate the number of lung cancers diagnosed by the derived CTs.

Finally, a large-scale study with direct CT access from primary care should be performed to test whether direct LDCT from primary care may reduce the time to diagnosis and result in a lower disease stage at diagnosis. Furthermore, a study comparing LDCT screening with case-findings based on direct LDCT from primary care would be interesting because it may reveal which scenario performs best on outcomes like PPV of cancer, PPV of other lung diseases, costs, patients/doctor satisfaction, additional work-up, and cancer stage, among others.
CHAPTER 8:

References

(3) Statistics Denmark. 2013; Available at: www.sst.dk.

(10) Ung KA, Campbell BA, Duplan D, Ball D, David S. Impact of the lung oncology multidisciplinary team meetings on the management of patients with cancer. Asia Pac J Clin Oncol 2014 Mar 27.

(49) Rogers TK. Primary care radiography in the early diagnosis of lung cancer. Cancer Imaging 2010 03/16;10:73-6.:73-76.

(78) Sørensen HT, Christensen T, Schlosser HK, Pedersen L. Use of Medical Databases in clinical Epidemiology. Aarhus: Department of Clinical Epidemiology, Aarhus University Hospital; 2008.

(100) Lidegaard O, Hammerum MS. The National Patient Registry as a tool for continuous production and quality control. Ugeskr Laeger 2002 Sep 16;164(38):4420-4423.

(105) Ahrensberg JM. Childhood cancer in primary care - from symptom to treatment dissertation]. : The Research Unit for General Practice. Danish Research Centre for Cancer Diagnosis in Primary Care; 2012.

CHAPTER 9:

English summary
This PhD thesis is based on the project “The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial”, performed in Denmark in 2010-2013. The thesis includes four papers and focuses on early lung cancer diagnostics in general practice.

9.1 Introduction

A total of 4200 new cases of lung cancer are diagnosed in Denmark annually. The stage of the disease is an important prognostic factor; thus, the opportunity for curative treatment declines with more advanced tumour stage. Lung cancer patients in Denmark (like in the UK) have a poorer prognosis than lung cancer patients in other European countries. One explanation could be delayed diagnosis. A fast-track pathway was therefore introduced in an attempt to expedite the diagnosis of cancer. However, it seems that not all patients can be diagnosed through this pathway. In order to ensure fast and early lung cancer diagnosis, it is crucial to examine the initial diagnostic process in general and the role general practice plays in lung cancer diagnostics in particular. The specific areas of investigation include the pathways to diagnosis, the characteristics of patients who are at special risk of delayed diagnosis and the level of pre-diagnostic activity in general practice.

A chest radiograph is often the first choice in the investigation of lung cancer. Unfortunately, radiographs are less suitable for central and small tumours. Low-dose computer tomography (LDCT), however, has a high sensitivity for lung cancer which implies that it can be used to detect patients with localised, potentially curable disease.

9.2 Aim

The aim of this thesis was to increase our knowledge of the initial stages of lung cancer diagnostics in general practice. The thesis also examined the effect of a direct referral from general practice to an additional diagnostic test, the LDCT.

The aims of this thesis were:

1) To describe Danish patients’ pathways to the diagnosis of lung cancer in general and the pre-diagnostic activity leading up to diagnosis in particular. An additional aim was to explore the diagnostic intervals for specific patient groups (Paper I).

2) In a randomised, controlled trial including all patients referred for the existing fast-track scheme to either direct chest and upper abdomen CE-
MDCT or to evaluation by the chest physician, (i) to test:
Fast-track performance measured by the number of CE-MDCT scans
and chest physician specialist time per diagnosis (Paper II)

3) In a two-arm, clinical, controlled, cluster-randomised trial where direct
referral to CT together with a lung cancer update is compared with
usual practice, (i) to test how CT is used in this group of patients and
the outcome of CT (Paper III); and (ii) to test the effect of either modality
on the time to lung cancer diagnosis, the TNM stage and the use of the
fast-track pathway for lung cancer (Paper IV).

9.3 Methods

Study I was a national registry-based cohort study of 971 consecutive, in-
cident lung cancer patients in 2010 Data were derived from national regist-
ries and questionnaires filled in by general practitioners (GPs).

Study II was a randomised, controlled trial enrolling 493 patients referred
from general practice to a fast-track evaluation. Half of the patients were
randomly assigned to the intervention and went straight to a chest CT
before a chest physician evaluation.

Studies III and IV were a cluster-randomised, controlled trial (IV) and a
cohort study nested in the trial (III). A total of 199 general practices with
266 GPs were randomised into two groups. Intervention GPs were offered
direct access to a low-dose chest CT combined with a meeting on early
lung cancer detection. Study III concerned the intervention arm solely and
reported uses and outcomes of the scans. Study IV evaluated the effect
of direct low-dose CT on the time to diagnosis and stage at diagnoses for
patients from intervention and control GPs.

9.4 Results

In Study I, we found that GPs were involved in 2/3 of all lung cancer
diagnostic pathways. One quarter of the patients followed the obvious
pathway from general practice to fast-track detection. At least one radi-
ograph was performed in 85.6% of patients, whereas 1/3 of all patients
had two or more radiograph performed during the 90 days preceding di-
agnosis. Patients with co-morbidity or unspecific symptoms more often
had two or more X-rays performed than patients without these charac-
teristics.

In Study II, there was no difference between the groups in the number of
CTs performed. In the intervention group, chest physicians spent mean
13.3 minutes less per referred patient than in the control group.
In Study III, we found that 648 patients were referred to low-dose CT during a 19-month period. Half of the referred patients needed further work-up, and 15 (2.3%) of the patients had lung cancer, 60% in a localised stage. For all patients, 6.8% were diagnosed with a severe lung disease. In all, 2/3 of the GPs used the CT opportunity; and the referral rate was 61% higher for GPs participating in the lung cancer meeting than for GPs who did not participate in such meetings.

In Study IV, we found that direct, low-dose CT from primary care did not significantly influence stage at diagnosis and had only a limited impact on time to diagnosis.

9.5 Conclusion and perspectives

This thesis contributes to the knowledge of the early diagnosis of lung cancer in Denmark. General practice was found to play an important role, but only a small part of Danish lung cancer patients were diagnosed from general practice through the fast-track pathway. This together with the fact that a high proportion of patients had two or more radiographs within the 90 days preceding the diagnosis indicate that other diagnostic strategies should be tested in an attempt to provide GPs with the best opportunity for early diagnosis.

This thesis provides evidence that GPs are, indeed, able to refer patients straight-to-test in the fast-track pathway. This knowledge may be used when organising other fast tracks. Furthermore, GPs participating in education about early lung cancer diagnosis were willing to refer patients direct to low-dose CT (LDCT) from primary care. Half of the patients needed further diagnostic work-up, and 2.3% of all patients referred were diagnosed with lung cancer. In addition, many lung diseases were diagnosed by LDCT. No effect on time to diagnosis or stage at diagnosis was found when patients from intervention GPs were compared with patients from control GPs.

The effect of combining direct access to LDCT with referral to the existing fast-track pathway should be analysed as it may ensure earlier and faster lung cancer detection in primary care. Direct access to LDCT scan may also be an alternative to lung cancer screening. Furthermore, if a LDCT screening program is going to be implemented, it should be considered to supplement the program with access to CT directly from primary care for the symptomatic, not-screened patients.
CHAPTER 10:

Dansk resume

10.1 Introduktion

Lungecancer er den hyppigste årsag til cancerdød hos både mænd og kvinner i Danmark. Lungecancerpatienter i Denmark (og Storbritannien) har dårligere prognose end patienter i andre europæiske lande. En af forskerne menes at være forsinket diagnostik. En løsning har været at indføre et standardiseret forløb for udredningen af lungecancer, lungekærpakken. Noget tyder dog på, at ikke alle patienter diagnosticeres ved denne ordning. I håb om at bedre den initiale diagnostik af lungecancer og dermed bedre prognosen er det essentielt at have den størst mulige indsigt i, hvordan patienter primært udredes. Hvor vigtig er almen praksis i udredningen, hvilke patienter er i risiko for forsinket diagnostik, hvor høj er prædiagnostiksniveauet, samt hvilke veje til diagnosen benyttes er et hovedelement i den initiale lungecancerdiagnostik i almen praksis. En af de specifikke mål er at beskrive veje til lungecancerpatienters diagnose og undersøge de diagnostiske intervaller samt den prædiagnostiske aktivitet (Studie I).

De specifikke mål var:

1) Beskrive veje til lungecancerpatienters diagnose og undersøge de diagnostiske intervaller samt den prædiagnostiske aktivitet (Studie I).

2) I et randomiseret kontrolleret forsøg med alle patienter henvist til lungekærpakken til enten direkte CT scanning eller evaluering ved lungemediciner at teste: Forskelle i antal scannede patienter, lungemedicinsk speciallægetid brugt per diagnose og tilfredshed hos personalet mellem de to grupper (Studie II).

3) I et toarmet randomiseret forsøg med direkte lav-dosis CT fra almen praksis at teste.
A) Hvordan CT bruges, hvilket patienter der henvises og hvilke diagnoser, der kan stilles. Yderligere at teste hvilken ændring i brug af den eksisterende lungekræftpakke direkte CT medfører (Studie III).

B) Effekten af direkte lav-dosis CT på tid til diagnose og lungecancerstadije samt hvilken ændring i brug af den eksisterende lungekræftpakke, der kan observeres (Studie IV).

10.3 Metode

Studie I var et nationalt registerbaseret kohortestudie med 971 nydiagnosticerede lungecancerpatienter. Her blev benyttet registerdata samt spørgeskemaoplysninger udfyldt fra patientens praktiserende læge.

Studie II var et lodtrækningsforsøg, hvor alle patienter henvist til den eksisterende lungekræftpakke blev delt i to grupper. Halvdelen af patienterne blev henvist direkte til CT scanning, mens den anden halvdel (kontrollerne) blev set af lungemediciner før en eventuel videre udredning.

Studie III og IV var ligeledes et lodtrækningsstudie (IV) samt et kohortestudie i lodtrækningsstudiet (III). Her blev 119 praksisadresser delt i to grupper. Interventionslægerne fik mulighed for at deltage i efteruddannelse om tidlig diagnostik af lungecancer samt for at henvise direkte til lav-dosis CT scanning fra almen praksis. Kontrolllægerne fortsatte med vanlig lungecancerudredning. Studie III omhandlede kun interventionsslægerne samt de patienter, der henvistes til direkte CT. Studie IV afrapporterede effekten af direkte CT på tid til diagnose og stadije ved diagnosen mellem kontrol og interventionslægernes lungecancerpatienter.

10.4 Resultater

Studie I viste, at almen praksis var involveret i diagnosen af 2/3 af danske lungecancerpatienter. Af alle patienterne fulgte kun ca. 1/4 den forventede vej fra den praktiserende læge til kræftpakkeudredning. Høj alder, manglende brug af kræftpakken, lokal-stadije sygdom og uspecifikke symptomer medførte større risiko for forsinkelse i udredningen. Inden for 3 måneder op til diagnosen havde 85,6% af patienterne fået taget et røntgenbillede, 1/3 havde fået taget mindst to billeder. Flere patienter med komorbiditet og uspecifikke symptomer havde fået taget to eller flere røntgenbilleder op til diagnosen.

Studie II viste, at der ingen forskel var i antallet af udførte CT scanings mellem de to grupper. Hos interventionsgruppen brugte den lungemedicinske speciallæge 13,3 min mindre per patient sammenlignet med patienter i kontrol gruppen. Den nye organisering var højt accepteret hos personalet.
Studie III viste, at 648 patienter blev henvist til direkte CT i en 19-måneders periode. Halvdelen havde behov for yderligere undersøgelser, og 2,3% af de scannede patienter blev diagnosticeret med lungecancer, 60% i lokal stadie (TNM I/II). Blandt patienterne havde 6,8% patienter nye lungesygdomme. I alt brugte 2/3 af de praktiserende læger muligheden for direkte henvisning til CT. Henvisningsraten var 61% højere, hvis de praktiserende læger deltog i efteruddannelsen.

I Studie IV kunne der ikke påvises forskel i tid til diagnose eller stadie ved diagnosen mellem patienter fra interventions- og kontrollæger. Dog var der større risiko for lange intervaller, hvis patientens læge ikke deltog i efteruddannelsen.

10.5 Konklusion og perspektiver

APPENDIX 1-8:

Information to GPs
Praktiserende læge

[GP navn]

[GP adresse]

Information om projekt om tidlig diagnostik af lungecancer – hurtig CT scanning i almen praksis

Kære kollega

Vi skriver til dig for at informere om et projekt om tidlig diagnostik af lungeskade. Din praksis er blevet udvalgt til at få en særlig adgang til CT-scanning, og samtidig få tilbud om specifik efteruddannelse i tidlig diagnostik af lungeskade.

For patienter med lungesymptomer får du altså adgang til CT-scanning. Dette, fordi kræftstadiet på diagnosetidspunktet er meget vigtig for overlevelsen, og fordi en tidligere diagnose øger mulighederne for en kurativ indsats væsentligt. Almen praksis er den vigtigste aktør i at opnå dette og dermed forbedre overlevelsen for lungeskadepatienter!

Kun 33% af lungeskadepatienter passer i kræftpakken for lungeskade, og almen praksis skal derfor have fokus på at optimere diagnostikken hos patienterne. Ofte bruger man konventionelt røntgen af thorax, men den undersøgelse er dog ikke særligt velegnet til at diagnosticere lungeskade i et tidligt stadium.

Ved CT scanning finder man seks gange oftere cancer i stadiet I sammenlignet med røntgen. Det betyder, at man finder flere patienter med lokaliseret og kurabel sygdom. CT scanning kan også bruges i diagnostikken af andre lungesygdomme, fx fibrose. Ulemperne ved CT scanning er, at den er dyrere og medfører højere stråledosis, og oftere resulterer i uspecifikke fund, der skal følges op.

Dette forskningsprojekt skal undersøge effekten af at supplere udredningen af lungesymptomer i almen praksis med direkte, hurtig CT scanning.

Din praksis er randomiseret som interventionsgruppe!

Som interventionspraksis får man:

1. Mulighed for at kunne henvise direkte til CT scanning på Aarhus Sygehus, NBG.

Fra den 15. november 2011 er det muligt for din praksis at henvise dine patienter med lungesymptomer til en CT scanning af thorax og øvre abdomen med kontrast. Scanningen er af
samme kvalitet som den, der bruges i lungekræftpakken, og den vil blive foretaget hurtigt, dvs. inden for 48 timer efter henvisning.

Du vil modtage endnu et informationsbrev, hvor de praktiske forhold vedrørende henvisningsproceduren vil blive gennemgået. Principielt set må alle patienter henvises, men oftest vil det dreje sig om patienter med lungesymptomer, hvor du ønsker en billeddiagnostisk afklaring, og ellers ville have benyttet et konventionelt røntgen af thorax. Patienter, der opfylder krav til lungekræftpakken, skal fortsat henvises ad denne rute.

Vi sender også invitation til lokalt fyraftensmøde snarest.

Projektdeltagelse anbefales af Multipraksisuudvalget.

Vi håber meget, at du og din praksis har mulighed for at deltage og være med til at undersøge muligheder for at bedre prognosen hos denne patientgruppe.

Undertegnede står gerne til disposition, hvis yderligere oplysninger ønskes.

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke
Læge og ph.d.-studerende
Telefon: 8942 6217
Mail: louise.mahncke@alm.au.dk

Yderligere oplysninger om projektet kan findes på: www.cap.au.dk/direktectscanning

Øvrige medlemmer af projektgruppen:

- Peter Vedsted, professor, leder af Center for Forskning i Cancerdiagnostik i Praksis - CaP, Aarhus Universitet.
- Torben Riis Rasmussen, ph.d., overlæge. Lungemedicinsk Afdeling, Aarhus Sygehus, NBG.
- Finn Rasmussen, dr.med., overlæge. Radiologisk Afdeling, Aarhus Sygehus, NBG.
- Peter Meldgaard, ph.d., overlæge. Onkologisk Afdeling, Aarhus Sygehus, NBG.
Information om procedure for henvisning til direkte CT-scanning af thorax og øvre abdomen i projektet om tidlig diagnostik af lungecancer

Kære kollega

Hermed som lovet de praktiske forhold, når du ønsker at henvise en patient med lungesymptomer til CT scanning.

Fra den 15. november 2011 er det muligt for din praksis at henvise dine patienter med lungesymptomer til CT scanning af thorax og øvre abdomen med kontrast. Scanningen udføres som i lungekræftpakken, og den vil blive foretaget hurtigt, dvs. inden for 48 timer efter henvisning.

Som nævnt i det første informationsbrev finder man ved CT scanning seks gange oftere cancer i stadie I sammenlignet med røntgen. Det betyder, at man finder flere patienter med lokaliseret og kurabel sygdom. CT scanning kan også bruges i diagnostik af andre lungesygdomme. Ulemperne ved CT scanning er, at den er dyrere og medfører højere stråledosis, og oftere resulterer i uspecifikke fund, der skal følges op.

Henvisning:

Anamnesen skal indeholde: Tidligere maligne sygdomme, tobaksanamnese, kendte lungesygdomme.

Henvisningen må gerne indeholde information om, hvordan svaret ønskes tilsendt (fax/elektronisk).

Booking:
Ring på 7846 2515 (sekretær på røntgen) og få en tid med det samme.

Pga. den korte tidsfrist sendes ikke brev til patienten.
Blodprøve:
Da scanningen er med kontrast, skal der foreligge en ny p-kreatinin. Denne kan tages samtidig med henvisningen, benyt Webreq som vanligt. Det er vigtigt at blodprøverne indsendes samme dag. Hvis det vurderes, at prøven ikke vil kunne analyseres rettidigt, kan patienten sendes til By Laboratoriet (Nørrebrogade 44, bygning 9 st.).

Scanning:
Foretages på Radiologisk afdeling, bygning 6, Nørrebrogade 44, 8000 Aarhus C.

Svar:
Scanningen beskrives samme dag, og svaret går til dig med en konklusion. Scanningen gennemgås også på lungemedicinsk konference dagen efter.
I tvivlstilfælde er det altid muligt at ringe direkte til overlæge på Lungemedicinsk Afdeling, Aarhus Sygehus på tlf. 8949 4748.

Vedlagt patientinformation til kopiering samt et oversigtskort med samme information, fx til brug for klinikkens sekretær samt Undertegnede står gerne til disposition, hvis yderligere oplysninger ønskes.

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke
Læge og ph.d.-studerende
Tlf. 8942 6217
Mail: louise.mahncke@alm.au.dk

Yderligere oplysninger om projektet kan findes på: www.cap.au.dk/direktectscanning

Øvrige medlemmer af projektgruppen:
- Peter Vedsted, professor, leder of Center for Forsknings i Cancerdiagnostik i Praksis - CaP, Aarhus Universitet.
- Torben Riis Rasmussen, ph.d., overlæge. Lungemedicinsk Afdeling, Aarhus Sygehus, NBG.
- Finn Rasmussen, dr.med., overlæge. Radiologisk Afdeling, Aarhus Sygehus, NBG.
- Peter Meldgaard, ph.d., overlæge. Onkologisk Afdeling, Aarhus Sygehus, NBG.
Praktiserende læge
[GP navn]
[GP adresse]

Indbydelse til fyraftensmøde - Lungekræft

Kære kollega

Kom og få en fokuseret, hurtig opdatering på tidlig diagnostik af lungecancer. Du er blevet udtrukket tilfældigt sammen med din praksis til at sætte særlig fokus på udredning af lungecancer. I forbindelse med projektet om adgang til hurtig CT scanning som led i tidlig diagnostik af lungecancer inviterer vi derfor til et koncentreret 1-times fyraftensmøde.

Mødet vil omhandle:

- Diagnostik af lungekræft, symptomer og beslutningsstøtte
- Brug og tolkning af CT scanning af thorax/øvre abdomen i almen praksis

Mødet varer 1 time og der vil være let servering.

Vi håber meget, at du har mulighed for at deltage, da dette intensive kursus skal ses i sammenhæng med din mulighed for at henvise patienter direkte til CT scanning.

Udfyld venligst vedlagte tilmeldningsseddel, og fax den til os senest den 7. december. Vi vil herefter snarest vende tilbage!

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke
Læge og ph.d.-studerende
Telefon: 871 68037
Mail: louise.mahncke@alm.au.dk
Yderligere oplysninger om projektet kan findes på: www.cap.au.dk/direktectscanning

Udfyld venligst nedenstående skema og fax på faxnr.: 8612 4788

Alle møder afholdes fra kl. 16.30 til 17.30.

Skriv hvilke(n) dato du ønsker.

HUSK navn, også på evt. uddannelseslæger.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Navn(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tirsdag den 3. januar: Frokoststuen, Forskningsenheden for Almen Praksis, Bartholins allé 2, Aarhus</td>
<td></td>
</tr>
<tr>
<td>Onsdag den 11. januar: Frokoststuen, Forskningsenheden for Almen Praksis, Bartholins allé 2, Aarhus</td>
<td></td>
</tr>
<tr>
<td>Tirsdag den 17. januar: Restaurant Navigator, Marselisborg Havnevej 46, D.</td>
<td></td>
</tr>
<tr>
<td>Tirsdag den 24. januar: Sabro Kro, Viborgvej 780.</td>
<td></td>
</tr>
<tr>
<td>Tirsdag den 31. januar: Restaurant Navigator, Marselisborg Havnevej 46, D.</td>
<td></td>
</tr>
</tbody>
</table>

Ovenstående datoer passer desværre ikke i min kalender, men jeg vil gerne kontaktes med andre datoer eller et kort personligt besøg i praksis. Kontakt mig på telefon ... eller mail: ...

Jeg er ikke interesseret i at modtage efteruddannelse om tidlig diagnostik af lungecancer og brug af CT

Stempel med dit navn:

Underskrift:..
Praktiserende læge

[GP navn]
[GP adresse]

Status på projektet: tidlig diagnostik af lungecancer – hurtig CT scanning i almen praksis

Kære kollega

Som interventionslæge i ovenstående projekt, har du nu i to måneder haft muligheden for at henvise patienter, du ønsker lungeudredt, til CT scanning.

Hermed en status for projektet:

Muligheden er blevet taget godt i mod! I løbet af de første to måneder, er der scannet knap 50 patienter. Der er fundet 3 lungekræft tilfælde samt en række patienter, der er under udredning.

Vi har indtil videre CT scannet alle projekt-patienterne med en høj-dosis opløsning og kontrast. Dette har vi gjort, da vi fra begyndelsen har været i tvivl om, hvilke patienter I ville henvise. Den erfaring vi har gjort os betyder, at vi nu i stedet har mulighed for at tilbyde en lav-dosis CT scanning uden kontrast.

Det betyder, at vi kan scanne flere patienter i timen, at patienterne ikke skal have lagt venflon og have kontrast og at stråledosis bliver nedsatt betragteligt. I skal derfor heller ikke tage creatinin på patienten.

Ved en lav-dosis findes stort set samme antal tumorer/infiltrater som ved høj-dosis, men man undgår de store gener ved opfølgen af uspecificke fund og man får ikke information om tilstande, man ikke kigger efter. Det er fortsat sådan, at scanningen gennemses at røntgenlæge samme dag og at scanningen gennemgås på lungekonference dagen efter, hvorpå der går svar, med konklusion ud til jer. Såfremt scanningen viser en tumor skal patienten efterfølgende have en høj-dosis CT scanning, denne bruges blandt andet til stadiebestemmelse.

Husk venligst indikationerne, henvis:

- Patienter, I ønsker pulmonalt udredet.
- Patienter med fortsatte symptomer og normalt rtg af thorax
- Patienter med lunge og almene/ukarakteristiske symptomer.

Aarhus d. 20. januar 2012
Vær opmærksom på følgende:

- Patienter, hvor I har begrundet mistanke om lungecancer, skal pakkeudredes
- Patienter med hæmoptyse skal pakkeudredes
- 1% af lungecancerfallene findes hos < 45-årige, 10% af lungecancerne er hos aldrig rygere (hyppigst kvinder)
- Patienter, der er syge, men hvor I ikke ved fra hvilket organ, kan henvises til occult-pakken.

Undertegnede står gerne til disposition, hvis yderligere oplysninger ønskes.

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke
Læge og ph.d.-studerende
Telefon: 8942 6217
Mail: louise.mahncke@alm.au.dk

Yderligere oplysninger om projektet kan findes på: www.cap.au.dk/direktecscanning

 Øvrige medlemmer af projektgruppen:

- Peter Vedsted, professor, leder af Center for Forskning i Cancerdiagnostics i Praksis - CaP, Aarhus Universitet.
- Torben Rios Rasmussen, ph.d., overlæge. Lungemedicinsk Afdeling, Aarhus Sygehus, NBG.
- Finn Rasmussen, dr.med., overlæge. Radiologisk Afdeling, Aarhus Sygehus, NBG.
- Peter Meldgaard, ph.d., overlæge. Onkologisk Afdeling, Aarhus Sygehus, NBG.
Aarhus d. 6. februar-2012

Praktiserende læge
[GP navn]
[GP adresse]

Indbydelse til fyraftensmøde - opsamlingsheat

Kære kollega

I forbindelse med projektet: **Effekt af adgang til hurtig CT scanning ved tidlig diagnosik af lungecancer i almen praksis**, har vi i projektgruppen nu gennemført **6 fyraftensmøder**, hvor vi har gennemgået:

- Lungekræftdiagnostik, symptomer og henvisningspraksis, inklusiv beslutningsalgoritmer
- Brug og tolkning af CT-scanning af thorax i almen praksis

Møderne er blevet meget vel modtaget, og vi har fået tillagemeldinger om, at undervisningen har stor relevans for praksis. Indtil videre har næsten 70 læger deltager.

Vi vil derfor tilbyde dig endnu en mulighed for at deltage i et kortvarigt fyraftensmøde. Tilbuddet gælder de læger, der er udtrukket til interventionsgruppen.

Vi ved fra de tidligere møder, at kollegerne synes, det er vigtigt, at man som interventionslæge er opdateret inden for diagnostik af lungekræft og er velinformeret om, hvordan CT scanningen skal bruges.

Udfyld venligst vedlagte tilmeldingsseddel, og fax den til os senest den 16. februar.

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke
Læge og ph.d.-studerende
Telefon: 871 68037

Mail: louise.mahncke@alm.au.dk

Yderligere oplysninger om projektet kan findes på: www.cap.au.dk/direktectscanning
Udfyld venligst nedenstående skema
og fax den til Forskningsenheden på fax nr.: 8612 4788

Alle møder afholdes fra kl. 16.30 til 17.30.
Der vil være let servering.

Skriv hvilken dato du ønsker.
HUSK navn, også på evt. uddannelseslæger.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Navn(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tirsdag den 28. februar:</td>
<td>Restaurant Navigator, Marselisborg Havnevej 46 D Aarhus</td>
</tr>
<tr>
<td>Tirsdag den 6. marts:</td>
<td>Restaurant Navigator, Marselisborg Havnevej 46D Aarhus</td>
</tr>
</tbody>
</table>

Ovenstående datoer passer desværre ikke i min kalender, men jeg vil gerne kontaktes med andre datoer eller et kort personligt besøg i praksis. Kontakt mig på telefon .. eller mail:...

Stempel med dit navn:

Underskrift:...

OBS! Ved færre end ti tilmeldte aflyses mødet.
Tidlig diagnostik af lungecancer – hurtig CT scanning i almen praksis

Kære kollega

Som interventionslæge i ovenstående projekt, har du nu i ni måneder haft muligheden for at henvise patienter, du ønsker lungeudredt, til CT scanning. Vi håber du finder denne mulighed god i den daglige kliniske praksis.

Der er nu scannet mere end 300 patienter. Vi kan se at nogle læger oftere end andre finder indikation for scanning. Projektet fortsætter i mindst 3 måneder endnu og det bliver spændende at opgøre resultaterne.

Husk venligst indikationerne, henvis:

- Patienter, I ønsker pulmonalt uddrekt.
- Patienter med fortsatte symptomer og normalt rtg af thorax
- Patienter med lunge og almene/ukarakteristiske symptomer.

Vær opmærksom på følgende:

- Patienter, hvor I har begrundet mistanke om lungecancer, skal pakkeudredes
- Patienter med hæmoptyske skal pakkeudredes

Undertegnede står gerne til disposition, hvis yderligere oplysninger ønskes.

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke
Læge og ph.d.-studerende
Telefon: 8942 6217 Mail: Louise.mahncke@alm.au.dk

Yderligere oplysninger om projektet kan findes på: www.cap.au.dk/direktectscanning
Henvisning til direkte CT scanning af thorax på Aarhus Sygehus, NBG:

Indikationer:
Patienter, der ønskes pulmonalt udredt, og som ikke kan henvises til lungepakke udredning.

Henvisning:
Faxes på 7846 2500 eller sendes elektronisk.
Ønsket undersøgelse: CT af thorax.
Relevant anamnese: Tidligere maligne sygdomme, tobaksanamnese (vigtigt), kendte lungesygdomme.
Svar ønskes tilsendt: pr. fax/elektronisk.

Booking:
Ring på 7846 2515 (sekretær på røntgen) og få en tid med det samme. Pga. den korte tidsfrist sendes ikke brev til patienten.

Scanning:
Foretages på: Radiologisk Afdeling, Bygning 6, Nørrebrogade 44, 8000 Aarhus C.

Svar:

Aarhus, den 29. august 2012
Louise Mahncke
Læge, ph.d.-studerende
Tlf. 22759791, mail: louise.mahncke@alm.au.dk
Praktiserende læge
[GP navn]
[GP adresse]

Tidlig diagnostik af lungecancer – hurtig CT scanning i almen praksis
Afslutning af projektet!

Kære kollega
Som interventionslæge i ovenstående projekt, har du i 18 måneder haft muligheden for at henvise de patienter, du ønsker lungeudredt til CT scanning.

Der er nu scannet 615 patienter, henvist af 95 læger. Vi har fundet 3-4% cancerstilfælde samt mange med lungesygdomme. Halvdelen af de scannede patienter er blevet afsluttet direkte, mens den anden halvdel er blevet behandlet/yderligere udredt på lungemedicinsk afdeling eller henvist til en re-scanning.

Det bliver spændende at opgøre resultaterne endeligt.

Vær opmærksom på følgende:

- Patienter, der allerede er scannet og hvor røntgen afdelingen ønsker en re-scanning skal stadig henvises.

Projektgruppen vil gerne takke for jeres deltagelse dels med henvisning af egnede patienter, dels i forbindelse med udfyldelse af spørgeskemaer på nye lungecancer patienter.

Vi vil naturligvis informere jer om projektets endelige resultater når de foreligger.

Skulle det vise sig at der er positive resultater af undersøgelsen vil vi naturligvis fremføre dem for Region Midt, der så vil se nærmere på det.
Undertegnede står gerne til disposition, ved spørgsmål eller hvis yderligere oplysninger ønskes.

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke Guldbrandt
Læge og ph.d.-studerende
Telefon: 8716 8037 Mail: louise.mahncke@alm.au.dk

Yderligere oplysninger om projektet kan findes på: www.cap.au.dk/direktectscanning

Øvrige medlemmer af projektgruppen:

- Peter Vedsted, professor, leder af Center for Forskning i Cancerdiagnostik i Praksis - CaP, Aarhus Universitet.
- Torben Rits Rasmussen, ph.d., overlæge. Lungemedicinsk Afdeling, Aarhus Sygehus, NBG.
- Finn Rasmussen, dr.med., overlæge. Radiologisk Afdeling, Aarhus Sygehus, NBG.
- Peter Meldgaard, ph.d., overlæge. Onkologisk Afdeling, Aarhus Sygehus, NBG.
The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial
APPENDIX 9-10:

GP Coverletter
GP Questionnaire
Praktiserende læge
[GP navn]
[GP adresse 1]
[GP adresse 2]

Kære kollega

Vi tillader os at sende dette korte registreringskema til dig/din praksis, da du/I har haft ovenstående patient tilknyttet praksis i perioden op til diagnosen af lungekræft. Vi har fået diagnosen oplyst fra hospitalsets register.

Vi vil bede dig give nogle vigtige kliniske oplysninger om det tidlige forløb for patienten. Hvis I er flere læger i praksis, bedes skemaet udfyldt af den læge, der især var involveret i sygdomsforløbet frem mod diagnosen. Det drejer sig om:

"patientens navn, CPRnr"

Oplysningerne er meget vigtige idet almen praksis spiller en helt afgørende rolle i tidlig diagnostik af kæft. Symptomer på lungekræft er ofte vage og ukarakteristiske, og det kan være en klinisk udfordring at finde netop de patienter, der skal henvises til udredning. Vi undersøger hvordan almen praksis kan optimere forløbet.

Undersøgelsen er godkendt af Datatilsynet, Sundhedsstyrelsen og DSAMs udvalg for multipraksisundersøgelser, samt anbefalet og støttet af Kvalitets- og Efteruddannelsesudvalget i Region Midtjylland. Deltagelse i undersøgelsen honoreres med et modul (kr. 121,85) pr. udfyldt spørgeskema (husk at notere ydernummer på sidste side).

Vi vil bede dig returnere spørgeskemaet snarest muligt. Det er naturligvis frivilligt at deltage. Vi tillader os at sende dig en påmindelse, hvis vi ikke har modtaget spørgeskemaet inden tre uger.

Du er velkommen til at ringe eller maile til undertegnede, hvis du har spørgsmål eller kommentarer.

På forhånd tak for hjælpen!

Med venlig hilsen – på projektgruppens vegne

Louise Mahncke
Læge og ph.d.-studenterende, Tlf. 8716 8037, Mail: louise.mahncke@alm.au.dk

Øvrige medlemmer af projektgruppen:

- Peter Vedsted, professor, leder af Center for Forskning i Cancerdiagnostik i Praksis - CaP, Aarhus Universitet.
- Torben Riis Rasmussen, ph.d., overlæge, Lungemedicinsk Afdeling, Aarhus Sygehus, NBG.
- Finn Rasmussen, dr.med., overlæge, Radiologisk Afdeling, Aarhus Sygehus, NBG.
- Peter Meldgaard, ph.d., overlæge, Onkologisk Afdeling, Aarhus Sygehus, NBG.
Diagnostik af lungekræft i almen praksis

Registreringsskemaet bedes udfyldt af den læge, der har bedst kendskab til sygdomsforløbet frem mod aktuelle lungekræftdiagnose. Patientens navn står i følgebrevet.

Første del af skemaet omhandler praksis’ involvering i diagnostikken.

1. Var du/praksis involveret i diagnostikken af patientens lungekræft?
 - Ja, jeg/praksis var helt eller delvist involveret
 - Nej, jeg/praksis var ikke involveret (ingen kontakt med patienten i forbindelse med udredningen)

Hvis nej, hvad var årsagen til, at du/praksis ikke var involveret i udredningen?
 - Patienten blev indlagt akut uden forudgående kontakt til praksis
 - Patientens kræft blev fundet tilfældigt ved kontrol eller indlæggelse for anden sygdom
 - Andet: _______________________

Hvis du har svaret nej: Gå venligst til spørgsmål 11

Næste del af spørgeskemaet omhandler perioden fra patienten første gang henvendte sig med symptomer til diagnosen lungekræft blev stillet. Svar venligst så nøjagtigt som muligt ud fra journalnotater og din hukommelse. Hvis de precise datoer/varigheder ikke kan angives, giv da så præcist et skøn som muligt.

2. Hvilken dato henviste du/praksis, efter jeres egen udredning, første gang patienten til undersøgelse/vurdering på sygehus, hvor du/praksis videregav ansvaret for det videre udredningsforløb?

 - 20
 - 2
 - Dag
 - Måned
 - Årstal

 ☐ Ved ikke

3. Henviste du patienten til kræftpakke?
 - Ja, hvilken: _______________
 - Nej, hvortil da (fx lungemedicinsk afd., praktiserende speciallæge):
 - Ved ikke

 ☐ Forbeholdt kodning
4. Hvilke faktorer var afgørende for denne henvisning?
(Sæt gerne flere krydser inden for hver gruppe)

A) Patientens symptomer:
- Knude (incl. hævet lymfeknude)
- Vægttab
- Smerter (thorax, knogler eller andet)
- Synkebesvær eller globulusfornemmelse
- Vedvarende eller ændret hoste
- Ændrenød
- Hæshed
- Blodigt opspyt
- Træthed
- Feber
- Gentagne eller vedvarende infektioner
- Svimmelhed eller neurologiske udfald
- Appetitslåshed, madlede eller kvalme
- Hovedpine
- Dårlig almen tilstand
- Ledsmørter eller ledhævelse

Andet:

B) Paraklinik:
- Lavt hæmoglobin
- Trombocytose
- Forhøjet CRP/SR
- Ændret spirometri
- Suspekt rtg af thorax

Anden unormal billeddiagnostik:

Andet:

Forbeholdt kodning
Diagnostik af lungekræft i almen praksis

C) Andet:
- Patientens rygeanamnese
- Generel sygdomsbekyrning hos patienten uden præcise symptomer
- Pårørendes bekymring
- Din "mavefornemmelse" af, at patienten kunne fejle noget alvorligt
- Andet:

<table>
<thead>
<tr>
<th>Dag</th>
<th>Måned</th>
<th>Årstal</th>
</tr>
</thead>
</table>

5. Hvilken dato fik du første gang mistanke om, at denne patient kunne have kræft?

6. Hvad var afgørende for, at du fik mistanke om kræft hos denne patient?

(Sæt gerne flere krydser)
- Anamnesen
- Pårørendes oplysninger
- Den objektive undersøgelse
- Blodprøvesvar
- Billeddiagnostik (røntgen/CT)
- Manglende bedring af symptomer
- Forværring af symptomer
- "Mavefornemmelse" eller fornemmelse af, at noget var galt

| Dag | Måned | Årstal |

7. Hvilken dato startede du/praksis specifik udredning af patientens sygdom (blodprøver, billeddiagnostik el. lign.), hvor du/praksis stadig havde ansvaret for det videre forløb?

| Dag | Måned | Årstal |

Ved ikke
Diagnostik af lungkæft i almen praksis

I næste del af spørgeskemaet ønsker vi at få oplysninger om, hvornår patientens symptomer første gang blev præsenteret i praksis.

8. Hvilken dato henvendte patienten sig først gang i praksis med et givet symptom, der, med den viden du har i dag, kunne skyldes patientens lungkæftseydskdom? Anfør også det/de symptomer, som var under forløbet.

1. symptom: [Dag - Måned - Årstal]

Evt. 2. symptom: [Dag - Måned - Årstal]

Evt. 3. symptomet: [Dag - Måned - Årstal]

Ikke relevant

Næste del af spørgeskemaet omhandler din lægeafslutning af det aktuelle diagnostiske forløb fra første sygdomstegn til diagnosen.

Hvor tilfreds er du med følgende?

9.1 Længden af tiden, fra patienten første gang henvendte sig i praksis, til du/praksis fik mistanken om kæft

Meget tilfreds Tilfreds Utilfreds Meget utilfreds Ved ikke/relevant

9.2 Ventetid på billeddiagnostik inkl. scanning (ordineret fra praksis)

9.3 Den samlede ventetid fra første henvendelse i praksis til diagnosen blev stillet

54034
Diagnostik af lungekræft i almen praksis

<table>
<thead>
<tr>
<th>10. Var der forhold i din/praksis’ udredning af patienten, der kunne have forløbet bedre?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Sæt gerne flere krydser)</td>
</tr>
<tr>
<td>☐ Nej, alt forløb hensigtsmæssigt</td>
</tr>
<tr>
<td>☐ Ja, patienten henvendte sig sent</td>
</tr>
<tr>
<td>☐ Ja, patienten udeblev fra undersøgelser eller planlagt kontrol</td>
</tr>
<tr>
<td>☐ Ja, jeg/praksis forsinkelde diagnostikken (pga. interne forhold i praksis, f.eks. tilgængelighed, kommunikation, andenfravær m.m.)</td>
</tr>
<tr>
<td>☐ Ja, jeg/praksis blev snudt af en fusk negativ test</td>
</tr>
<tr>
<td>☐ Ja, andet og kommentarer i øvrigt:</td>
</tr>
</tbody>
</table>

Det næste spørgsmål omhandler lungekræftdiagnostik generelt og ikke den give patient.

Hvor tilfreds er du med Aarhus Universitetshospital mht. følgende?

<table>
<thead>
<tr>
<th>11.1 Adgangen til diagnostiske muligheder, når du ønsker at udrede en patient for lungekræft?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Meget tilfreds</td>
</tr>
<tr>
<td>☐ Tilfreds</td>
</tr>
<tr>
<td>☐ Utilfreds</td>
</tr>
<tr>
<td>☐ Meget utilfreds</td>
</tr>
<tr>
<td>☐ Ved ikke/ikke relevant</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.2 Din mulighed for at henvise til relevant diagnostisk teknologi, når du ønsker at udrede en patient for lungekræft?</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Meget tilfreds</td>
</tr>
<tr>
<td>☐ Tilfreds</td>
</tr>
<tr>
<td>☐ Utilfreds</td>
</tr>
<tr>
<td>☐ Meget utilfreds</td>
</tr>
<tr>
<td>☐ Ved ikke/ikke relevant</td>
</tr>
</tbody>
</table>

Sidste del af spørgeskemaet omhandler patienten.

12. Hvordan vil du karakterisere dit/praksis’ kendskab til patienten før aktuelle sygdom?

| ☐ Særdeles godt |
| ☐ Nogenlunde godt |
| ☐ Ringe |
| ☐ Kendte ikke patienten (første kontakt) |

5
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

13. Hvilke betydelige sygdomme havde patienten før aktuelle kæftsygdom?
 (Sæt evt. flere krydser)

- Ingen
- Der var andre sygdomme (komorbiditet), specifiser:
 - Anden kæftsygdom end lungekæft/ evt. tidligere kæftsygdom
 Hvilken?:
 - Hypertension
 - Iskæmisk hjertesygdom
 - Apopleksi og følger deraf
 - Diabetes
 - KOL, bronkitis, emfysem eller astma
 - Allergi i respirationsveje
 - Artritis eller anden reumatisk sygdom
 - Osteoporose
 - Demens
 - Lettere psykisk lidelse (let depression, mild angst mv.)
 - Psykisk sygdom (svær depression, udtalt angst, skizofreni, bipolær lidelse mv.)

- Anden: __

- Ved ikke
Diagnostik af lungekræft i almen praksis

14. Hvis du har øvrige kommentarer vedrørende udredningsforløbet i praksis, vil vi meget gerne høre om det, og du er velkommen til at skrive her:

Forbeholdt kodning

Honorar

15. For at vi kan udbetale honoraret for dit tidsforbrug, bedes du udfylde nedenstående.

Du bedes anføre ydernummeret for din praksis. Beløbet kommer til udbetaling via Region Midtjylland.

Ydernummer:

Kontrollér venligst, at du ikke er kommet til at springe spørgsmål over i skemaet. Det udfyldte skema bedes returneret til Forskningsenheden for Almen Praksis i vedlagte frankerede svarkuvert.

Tak fordi du ville bruge tid på at udfylde spørgeskemaet!
The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial
PAPER I

The role of general practice in routes to diagnosis of lung cancer in Denmark

Guldbrandt LM, Fenger-Grøn M, Rasmussen TR, Jensen H, Vedsted P

In press BMC Health Service Research
The role of general practice in routes to diagnosis of lung cancer in Denmark

A population-based study of GP involvement, diagnostic activity and diagnostic intervals

Louise Mahncke Gulbrandt¹,², Morten Fenger-Grøn³, Torben Riis Rasmussen³, Henry Jensen¹⁷, Peter Vedsted¹

1. Research Centre for Cancer Diagnosis in Primary Care, Research Unit for General Practice, Aarhus University, Denmark
2. Section for General Medical Practice, Department of Public Health, Aarhus University, Denmark
3. Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark

Correspondence:
Louise Mahncke Gulbrandt
MD, PhD Fellow
Research Centre for Cancer Diagnosis in Primary Care
Research Unit for General Practice
Aarhus University
Bartholins Allé 2
8000 Aarhus, Denmark

Number of words: 3,075
Number of figures: 3
Number of tables: 2
Abstract

Background. Lung cancers are generally diagnosed at more advanced stages of disease, and in Denmark and the UK lung cancer patients have lower survival rates than in most other European countries. This may be partly explained by prolonged time to diagnosis. Since 2008, Danish general practitioners (GPs) have been allowed to refer patients suspected of lung cancer directly to a fast-track diagnostic pathway. However, we know that presentation of lung cancer in general practice is diverse and complex. Therefore, we need systematic knowledge of the routes to diagnosis in Denmark to enable earlier lung cancer diagnosis. This study aims to describe routes to lung cancer diagnosis, the primary diagnostic activity prior to diagnosis and diagnostic intervals.

Methods. We conducted a national registry-based cohort study on 971 consecutive, incident lung cancer patients in 2010 using data from national registries and questionnaires filled in by GPs.

Results. GPs were involved in 68.3% of the diagnostic pathways. Of all lung cancer patients, 27.4% followed the route from GP to fast-track referral. At least one X-ray was performed in 85.6% of cases prior to diagnosis. More patients had no X-ray performed if the GP did not use the fast-track compared to patients referred through the fast-track (17.5% vs. 8.6%). Overall, 33.6% of patients had two or more X-rays performed during the 90 days before diagnosis. Patients had an increased likelihood of a long diagnostic interval if the GP interpreted the patient’s symptom as “not alarming” and if fast-track was not used.

Conclusions. Lung cancer patients followed several routes to diagnosis. To support earlier lung cancer diagnosis, other strategies that complement the fast-track pathway are needed. The high incidence of patients with two or more X-rays calls for studies investigating a more accurate test for lung cancer in primary care.

Keywords:
Lung cancer; Cancer pathways; General Practice; X-ray; Diagnostic intervals; Denmark
Background

Lung cancer stage dictates possible curative treatment and earlier diagnosis may be beneficial in allowing more patients the opportunity for curative treatment.

Achieving earlier diagnosis of cancer has been a part of the strategy for improving cancer outcome in Denmark since 2008, when a fast-track referral pathway for suspected cancer was introduced; meaning that patients with specific symptoms (e.g. sustained coughing) must be seen at the hospital within three days after referral [1,2].

Most lung cancer patients present with symptoms [3], and evidence suggests that patients may suffer from such symptoms long before the diagnosis [4,5]. Yet, there is a risk that symptoms may be attributed to a benign or self-limiting illness as most lung symptoms do not represent underlying cancer [6]. In primary care, general practitioners (GPs) interpret symptoms presented by the patients and act on the interpretation when considering what kind of diagnostic work-up (if any) is needed.

In addition to the clinical skills, the principal diagnostic tool available for the GP is a chest X-ray. However, since about 20% of all lung cancer patients have normal chest X-rays before diagnosis [7-9], a false negative X-ray may increase the diagnostic interval.

A British study including 409 lung cancer patients found that only 23% of the patients followed the route from symptom presentation in general practice to fast-track referral. The rest obtained their diagnosis through other routes [10]. In order to optimise and facilitate earlier lung cancer diagnosis in general practice, we need knowledge about the GPs’ symptom interpretation, diagnostic activity and the diagnostic pathways for lung cancer.

The aim of this paper was to describe pathways to diagnosis of lung cancer among Danish patients in general and pre-diagnostic activities in particular. In addition, we aimed to explore the diagnostic intervals for specific patient groups.
Methods

We conducted a national cohort study on first-time lung cancer patients, using data from national registries and questionnaires filled in by GPs. The civil registration number (CRN), a unique 10-digit personal identification number assigned to every Danish citizen, was used to link registers [11].

Setting

The study took place in Denmark in 2010. GPs act as first line and 99% of all citizens are registered with a general practice with which they have to consult. GPs are gatekeepers to the rest of the health care system with emergencies as the exceptions.

Study population

Patients were identified in the Danish National Patient Registry (NPR) [12]. The NPR is a national population-based database containing admission and discharge dates, combined with diagnoses classified according to the International Classification of Diseases (ICD-10).

Inclusion criteria for the patients were 1) registered in the NPR with ICD-10 code C34.0-9 as primary diagnosis, 2) diagnosed in the study period from 1 May 2010 to 31 August 2010, 3) living in Denmark, 4) ≥ 18 years and 5) listed with a GP. We excluded patients who had previously been registered with any cancer type (except non-melanoma skin cancer (C44)) in the Danish Cancer Registry (DCR) [13]. The sampling of patients is described in details previously [14].

Data collection

A questionnaire was sent to the general practice where the patient was listed. In practices with more than one GP, the GP most familiar with the patient was asked to complete the questionnaire based upon the medical records. There was no reimbursement for participation.

Data sources

We used the DCR to verify diagnosis and obtain data on tumour stage at diagnosis [15]. The DCR contains information about Danish cancer patients, date of diagnosis, tumour characteristics and similar data. Information about tumour stage at diagnosis in DCR is provided by a multi-disciplinary team decision based on pathological (pTNM) information with few exceptions. We obtained socioeconomic information from the Civil Registration System [11] and the Integrated Database for Labour Market Research (IDA) [16]. Information about performed X-rays was obtained in the NPR.

Variables

The patients were divided into groups depending on whether or not the GP responded. GPs involved in the diagnosis were asked to state whether the patient was referred through a fast-track route. Moreover, GPs were asked to rate their interpretation of presented symptoms as either 1) Alarm symptoms suggestive of
cancer (alarm symptoms), 2) Symptoms suggestive of any serious illness (serious, but unspecific symptoms) or, 3) Vague or ill-defined symptoms not directly suggestive of cancer or other serious illness (vague symptoms).

The primary care interval and the diagnostic intervals were calculated by combining data from the DCR and the questionnaire. The primary care interval was defined as the time from first presentation in primary care until referral to secondary care, and the diagnostic interval was defined as the time from first presentation until decisive diagnosis [17].

Cancer stage at diagnosis was grouped according to the TNM system (version 6) and was dichotomised into local and advanced disease. A cut-point between stage IIB and IIIA was chosen since a significant difference in mortality between these two stages has been documented by others [18].

The socioeconomic variables considered in the study were education and marital status. Education included basic school and was dichotomised into “≤10 years” and “>10 years”. Marital status was dichotomised into “cohabitating” or “living alone”.

Comorbidity was assessed using Charlson’s Comorbidity Index (CCI) categorised as 0, 1-2 or ≥3 from the NPR. The index date was set as the day before the first contact with the GP or the day before diagnosis (patients for whom the GP was not involved in the diagnosis).

Statistical analyses

Patient groups were compared using Wilcoxon’s rank-sum test for ordinal or continuous data including time intervals, Kruskal-Wallis test for differences between groups or Pearson’s chi-squared test for nominal or dichotomous data.

Backward cumulative curves for the dates of the latest and second-latest X-ray before diagnosis and associated 95% confidence bands were drawn by applying a standard Kaplan-Maier procedure and normal approximation on a reversed time scale.

We used generalised linear models for the binomial family to calculate the associations between long intervals and gender, age, marital status, education, comorbidity, GP interpretation and use of fast-track referral. Long intervals were defined as the 4th quartile for the full study population. This implies a prevalence of the outcome above 20%, in which case interpretation of odds ratios as prevalence ratios can lead to non-negligible bias [19]. Consequently, we chose the logarithm for the link function to facilitate direct estimation of prevalence ratios. Analysis of time intervals was restricted to patients with GP
involvement in the diagnosis. Estimates are presented with 95% confidence intervals (95% CIs) when relevant. Data were analysed using the statistical software Stata 12.0 (StataCorp LP, TX, USA).

Ethics
The study was approved by the Danish Data Protection Agency (J.no.: 2010-41-4694) and The Danish Health and Medicines Authority (J.no.: 7-505-29-1484/1 and J.no.: 7-604-04-2/195/EHE). According to the Research Ethics Committee of the Central Denmark Region, the Danish Act on Research Ethics Review of Health Research Projects (s. 8(3) of Act No. 402 of 28 May 2003) did not apply to this project.

Results
Descriptive data
A total of 990 lung cancer patients were identified in NPR. We excluded 14 patients because the diagnosis could not be validated in the DCR. Five patients registered with a lung cancer diagnosis in the DCR before 1 January 2010 were excluded. A questionnaire was sent to the remaining 971 patients’ GPs with a response from 690 (71.1%) (Figure 1). Patients listed with responding GPs had more advanced tumour stage at diagnosis (Table 1). If the GP was not involved in the diagnosis the patients tended to be older, more likely to be living alone and to have a higher comorbidity score.

Routes to diagnosis
GPs were involved in the diagnosis of 464 (68.3%) of the patients. If the GP were involved, a fast-track referral was used in 40.9% of the cases. In total, 186 of the patients (27.4% of all patients in the study) had a route starting with symptom(s) presented to the GP followed by referral to the fast-track diagnostic pathway.

If the GPs were not involved in the diagnosis the patients were most often diagnosed at the hospital referred for another disease (n=134, 63.9% of patients where the GP was not involved). In total, 6.3% (i.e. 43) of the patients were diagnosed in connection with an emergency admission (Figure 1).

Diagnostic activity
Of all patients, 847 (87.2%) had at least one X-ray and 334 (34.4%) had at least two X-rays performed in the year prior to diagnosis. The most of the diagnostic activity occurred from 90 days prior to diagnosis until the time of the diagnosis (Figure 2).

Diagnostic activity 90 days prior to diagnosis
During the 90 days before diagnosis, 85.6% of patients (831) had at least one X-ray performed and 33.6% (326) had at least two. No differences were found in number of performed X-rays between GP responders and GP non-responders (Figure 3) (p= 0.238) or between GPs involved in the diagnosis and non-involved GPs (p=0.550). A higher proportion of patients referred to a fast-track route had one X-ray performed (122
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

A higher proportion of patients for whom the GP interpreted the symptoms as 'serious, but unspecific' had two or more X-rays conducted (35.9%, 95%CI: 28.4-44.1) compared to patients for whom the GP stated 'alarm symptoms' (22.1%, 95% CI: 15.6-30.0) resulting in a RD: 13.8, 95% CI: 3.6-24.1 (p=0.010). A higher proportion of patients with co-morbidity (CCI > 0) had two or more X-rays performed (41.6%, 95% CI: 37.0-46.3) compared to patients with no co-morbidity (CCI=0) (26.8%, 95% CI: 23.2-30.8) with a RD: 14.7, 95% CI: 8.8-20.6 (p=0.001).

Primary care interval and diagnostic interval
The overall median primary care interval was seven days (interquartile interval (IQI): 0-30) whereas the median diagnostic interval was 29 days (IQI: 12-69).

Patient-related factors
The median primary care and diagnostic intervals were higher among patients with the lowest educational level (Table 2). Older age was statistically significantly associated with increased likelihood of longer intervals of both kinds (primary care interval >30 days and diagnostic interval ≥69 days).

GP-related factors
The median primary care interval and diagnostic interval were statistically significantly shorter if the GP suspected cancer or a serious disease compared to no cancer suspicion (Table 2). Patients referred to a fast-track route experienced a statistically significantly shorter median diagnostic interval than patients not referred to a fast-track route. Patients with advanced disease stages had a statistically significantly shorter diagnostic interval compared to patients with localised disease, but notably not a longer primary care interval (median diagnostic interval: 26 vs. 40 days (p=0.024), median primary care interval: 7 vs. 8 days (p=0.462)). There was an increased likelihood of a long primary care interval (adjusted PR: 4.8 (2.8-8.2)) and a long diagnostic interval (adjusted PR: 2.4 (1.5-3.9) if the GP interpreted the symptoms as "vague" compared to if the GP interpreted the symptoms as "alarm" symptoms (Table 2).

Discussion
Main findings
In a setting where GPs serve as gatekeepers to specialised medical care, including fast-track cancer diagnostic pathways, two thirds of lung cancer patients were seen in general practice before diagnosis and a quarter of lung cancer patients were diagnosed through the fast-track route.
For 25% of lung cancer patients, the GP assessed the primary care interval to be longer than one month. The diagnostic interval was above 69 days for 25% of the patients. The length of the diagnostic interval was associated with patient age and GP interpretation of symptoms and referral to fast-track pathway.

More patients diagnosed through fast-track had a chest X-ray than patients not diagnosed through the fast-track, which may indicate that the GPs use the X-ray as entrance to the fast-track rather than based on symptoms alone. Patients who bypassed the fast-track were more likely to have either none or more than two X-rays compared to patients in the fast-track. Further, if the GP interpreted the symptoms as ‘serious, but unspecific’ a higher proportion had two or more X-rays conducted. This may imply that these patients are more difficult to diagnose and that the diagnostic activity did not reveal the lung cancer. Moreover, almost half of the patients admitted acute had two or more X-rays which could indicate that these patients indeed were seen and investigated in primary care without finding the cancer.

Notably, we found that one in three patients had at least two X-rays performed within the 90 days prior to the diagnosis, implying that some of these patients could have had a false negative test. This finding definitely calls for research in order to test whether imaging with higher sensibility for lung cancer may result in fewer tests needed. We would recommend a Randomised Controlled Trial on better access to a technological upgraded investigation i.e. low-dose CT.

Strength and weaknesses

This study encompassed the entire population of consecutive, newly diagnosed lung cancer patients in Denmark identified through a valid hospital registry. The large number of included patients ensured a high statistical precision. The response rate among GPs was 71.1%, which is very satisfactory. If non-responding GPs were reluctant to respond because of long primary care intervals, our results are underestimating the actual intervals. It might be that GPs who did not respond more often were not involved in the diagnostic pathway. For these patients the diagnostic intervals may be shorter because those patients are diagnosed in hospitals in connection with another disease thus making us overestimate the overall intervals.

Recall bias could be introduced when GPs knew that the patient was diagnosed with lung cancer. This could influence the GP’s assessment of e.g. date of first presentation, symptoms and interpretation. The GPs were asked to use their electronic records and discharge letters from the hospitals to minimize this bias. If the recall bias made the GP underestimate the length of intervals in relation to the presenting symptom, such recall bias would tend to underestimate the association between time intervals and non-alarm symptoms.

Date of diagnosis was defined as the day initiating the hospitalisation or outpatient visit during which the diagnosis was made. Thus, the diagnostic intervals are shorter than if selecting the date of histological
diagnosis. However, as we wanted to examine the amount of X-rays performed before the diagnosis and primarily initiated by the GP, this definition increased the validity of the diagnostic activity by being truly prediagnostic.

Since we had no indication as to why X-rays were performed, we may have overestimated the diagnostic activity as some X-rays may have been due to e.g. pneumonia. Still, also in these instances, the GPs would intend to rule out the possibility of cancer.

Small Cell Lung Cancer comprised 8-10%, has a more rapid growth and the diagnostic intervals may be shorter with more alarm symptoms in comparison to the Non-Small Cell Lung Cancer. However, we did not stratify for this as the type is not known by the GP at presentation.

Generalisability
We included a well-defined study population. However, the findings should be interpreted carefully in view of the differences in health care systems around the world, e.g. levels of gatekeeping, fast-track referrals and access to X-ray services.

Comparison with other studies
Our finding is comparable to the findings of a British retrospective study including 220 lung cancer patients [20], where 61% of the patients were referred from primary care to specialist investigation. In line with our findings, another British study from 2012 found that 24% of the lung cancer patients were diagnosed through fast-track referral [21]. However, inpatient evaluation was found to account for only 4% whereas 39% of the patients were diagnosed through emergency routes. The differences could be explained by the algorithm used to identify pathways since we were able to detect whether patients were already registered in a hospital-based pathway. This is supported by a British study from 2007 with results similar to ours, including emergency referrals in 5% of the cases and fast-track referrals in 23% of the cases [10].

A British study [20] reported much longer intervals than our study (primary care: 52 (7-243)), which can be explained by different study designs. We used a questionnaire to GPs, whereas the British study used research assistants to scrutinise the medical records for nine predefined lung symptoms. The impact of this difference in study designs has also been shown for colorectal cancer [22].

A Danish study from 2006 [7], i.e. prior to the introduction of fast-track referral in Denmark, reported longer median primary (29 (IQI:10-63)) and secondary care intervals (58 (IQI:42-70)) compared to our study. This might indicate an effect of the introduction of fast-track pathways and the increased focus on early cancer detection.
We found that 85% of the patients had an X-ray during the 12 months immediately before diagnosis. This is more than seen in a British study from 2005, where 164 of 247 (66%) lung cancer patients had at least one chest X-ray requested from primary care in the year before the diagnosis [8]. Of all lung cancer patients, 15% had no X-ray and the possible lack of diagnostic activity before the diagnosis could be explained by patients not seeing the GP or patient and/or GP unawareness of symptoms. A British interview-based study found that patients extensively framed their symptoms of lung cancer as “normal features of lifestyle and ageing processes” [23].

At least one third of patients had two or more X-rays during the three months prior to the diagnosis, and some of these could false negative X-rays. This finding confirms earlier research [7-9] and indicates a need for a more critical use of X-rays for patients suspected for lung cancer. The fact that more patients referred to fast-track had an X-ray compared to other lung cancer patients may course concern. If the GPs primarily use the fast-track after a suspicious X-ray the rather large part of false negative X-rays could be a reason for not using the fast-track which in the end may lead to delayed diagnosis.

Conclusion and implications
Lung cancer patients follow various routes to diagnosis, and fast-track pathways are not sufficient to ensure and support earlier lung cancer diagnosis. Many of the patients are seen in general practice and different pathways are needed to support earlier diagnosis of lung cancer. GPs may need to be empowered in the investigation of early symptoms and better tools for assessment of lung cancer risk should be developed. The number of repetitive X-rays in patients without alarm symptoms and with comorbidity calls for testing of better diagnostic tools (e.g. low-dose CT scans) in a primary care setting.

Competing interests
No competing interests.

Authors’ contributions
LM performed the statistical analyses and wrote up the manuscript. MFG assisted with the statistical analyses. TRR participated in the design of the study. HJ supplied the questionnaire data for the study. LM and PV planned the study and participated in its design and coordination. All authors helped draft the manuscript and approved the final version.

Acknowledgement
We wish to thank Karina Garnier Christensen and Kaare Flarup for their assistance in selecting the correct radiological procedures from the registries.
Reference list

The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial

Table 1. Characteristics of the study population and of the patients for whom GPs were non-responders

<table>
<thead>
<tr>
<th></th>
<th>GP responders:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GP involved</td>
<td>GP not involved</td>
<td>P-value¹</td>
<td>All responders</td>
<td>Non-responders:</td>
</tr>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>All</td>
<td>464 (68.3)</td>
<td>215 (31.7)</td>
<td>690 (71.1)</td>
<td>281 (28.9)</td>
<td></td>
</tr>
<tr>
<td>Sex: Male</td>
<td>265 (57.1)</td>
<td>110 (51.2)</td>
<td>0.147²</td>
<td>379 (54.9)</td>
<td>168 (59.8)</td>
</tr>
<tr>
<td>Female</td>
<td>199 (42.9)</td>
<td>105 (48.8)</td>
<td></td>
<td>311 (45.1)</td>
<td>113 (40.2)</td>
</tr>
<tr>
<td>Age: Mean</td>
<td>68.5</td>
<td>70.1</td>
<td>0.069²</td>
<td>69.0</td>
<td>69.7</td>
</tr>
<tr>
<td>18-39</td>
<td>3 (0.7)</td>
<td>2 (0.9)</td>
<td>0.040³</td>
<td>5 (0.7)</td>
<td>2 (0.7)</td>
</tr>
<tr>
<td>40-59</td>
<td>89 (19.2)</td>
<td>32 (14.9)</td>
<td></td>
<td>123 (17.8)</td>
<td>45 (16.0)</td>
</tr>
<tr>
<td>60-79</td>
<td>306 (65.9)</td>
<td>136 (63.3)</td>
<td></td>
<td>448 (64.9)</td>
<td>184 (65.5)</td>
</tr>
<tr>
<td>80+</td>
<td>66 (14.2)</td>
<td>45 (20.9)</td>
<td></td>
<td>114 (16.6)</td>
<td>50 (17.8)</td>
</tr>
<tr>
<td>Education: ≤10 years</td>
<td>207 (44.6)</td>
<td>111 (51.6)</td>
<td>0.082²</td>
<td>324 (47.0)</td>
<td>145 (51.6)</td>
</tr>
<tr>
<td>11-15 years</td>
<td>186 (40.1)</td>
<td>78 (36.3)</td>
<td></td>
<td>266 (38.6)</td>
<td>106 (37.7)</td>
</tr>
<tr>
<td>>15 years</td>
<td>51 (11.0)</td>
<td>18 (8.4)</td>
<td></td>
<td>71 (10.3)</td>
<td>19 (6.8)</td>
</tr>
<tr>
<td>Unknown</td>
<td>20 (4.3)</td>
<td>8 (3.7)</td>
<td></td>
<td>29 (4.1)</td>
<td>11 (3.9)</td>
</tr>
<tr>
<td>Marital status: Cohabitating</td>
<td>276 (59.5)</td>
<td>110 (51.2)</td>
<td>0.042²</td>
<td>391 (56.7)</td>
<td>166 (59.1)</td>
</tr>
<tr>
<td>Living alone</td>
<td>188 (40.5)</td>
<td>105 (48.8)</td>
<td></td>
<td>298 (43.2)</td>
<td>115 (40.9)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1 (0.1)</td>
<td></td>
<td></td>
<td></td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>Comorbidity³: 0</td>
<td>283 (61.0)</td>
<td>82 (38.1)</td>
<td>0.001³</td>
<td>367 (53.2)</td>
<td>154 (54.8)</td>
</tr>
<tr>
<td>1-2</td>
<td>143 (30.8)</td>
<td>91 (42.3)</td>
<td></td>
<td>240 (34.8)</td>
<td>99 (35.2)</td>
</tr>
<tr>
<td>3+</td>
<td>38 (8.2)</td>
<td>42 (19.6)</td>
<td></td>
<td>83 (12.0)</td>
<td>28 (10.0)</td>
</tr>
<tr>
<td>TNM stage: Localised</td>
<td>69 (14.9)</td>
<td>42 (19.5)</td>
<td>0.123³</td>
<td>114 (16.5)</td>
<td>62 (22.1)</td>
</tr>
<tr>
<td>Advanced</td>
<td>395 (85.1)</td>
<td>173 (80.5)</td>
<td></td>
<td>576 (83.5)</td>
<td>219 (77.9)</td>
</tr>
</tbody>
</table>

¹Difference between groups were tested by Wilcoxon’s rank-sum test. ²Difference between groups were tested by Kruskal-Wallis test. ³Charlson’s Comorbidity Index (CCI) from NPR (index date: day before diagnosis).
Patients with lung cancer
n= 990

Patients with lung cancer (validated in CAR)
n= 971 (98.1%)

GP not involved
n=215 (31.7%¹)

Diagnosed at hospital referred for other disease
n=134 (63.9% [19.6%])¹

Patient submitted to hospital acute
n=63 (22.7% [4.3%])¹

Other
n=32 (15.4% [4.7%])¹

Fast track
n=186 (40.9% [27.4%])¹

No Fast track
n=269 (59.1% [39.6%])¹

GP involved
n=464 (68.3%³)

GP not involved
n=215 (31.7%)³

GP involved
n=464 (68.3%)³

Excluded:
14: not listed in CAR
5: in CAR before 1 Jan 2010

Patients with lung cancer (validated in CAR)
n= 971 (98.1%)

GP responders
n=690 (71.1%)

Patients with data
n=679 (98.4%)

Figure 1. Routes to diagnosis for consecutive primary lung cancer patients.

¹percentage of all patients with data.
²percentage of patients for whom GP was not involved.
³percentage of patients for whom GP was involved.
⁴percentage of all patients validated in CAR.
Figure 2: Proportion of lung cancer patients with X-rays performed during the 12 months immediately before diagnosis. The upper curve (blue) shows the proportion of patients receiving at least one X-ray before diagnosis and the lower (red) shows the proportion of patients receiving at least two X-rays before diagnosis. The curves should be read backwards from D (time for diagnosis), implying that approximately 25% of patients receive at least two X-rays three months prior to diagnosis. The bands are 95% confidence intervals.
Figure 3. Number of X-rays performed in the interval 90 days prior to diagnosis, depicted as percentages of patients with “zero”, “one”, “two” or “three or more” X-rays performed prior to diagnosis. The columns refer to the patients in different routes to diagnosis as illustrated in figure except for the three columns with GP symptom interpretation.

¹ percentage of all patients for whom the GP responded.
² percentage of all patients for whom the GP was involved in the diagnosis, 10 missings.
Table 2. Primary care and diagnostic intervals (in days) for lung cancer patients with a referral route involving the GP, according to patient characteristics, GP interpretation and use of fast-track procedures. Only GP-involved patients are included in the analyses. Adjusted and unadjusted associations for long intervals (4th quartile) are presented as prevalence ratios (PRs) with 95% confidence intervals (95% CI).

<table>
<thead>
<tr>
<th>Primary care interval</th>
<th>Diagnostic interval</th>
<th>PR (95%CI)</th>
<th>PR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unadjusted</td>
<td>Adjusted</td>
</tr>
<tr>
<td>All</td>
<td>N=429</td>
<td>7</td>
<td>0.30</td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>N=239</td>
<td>7</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Women</td>
<td>190</td>
<td>11.5</td>
</tr>
<tr>
<td>Age:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-68</td>
<td>N=226</td>
<td>7</td>
<td>0.24</td>
</tr>
<tr>
<td>69+</td>
<td>203</td>
<td>12</td>
<td>0.37</td>
</tr>
<tr>
<td>Education¹:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10 years</td>
<td>N=189</td>
<td>13</td>
<td>1-9</td>
</tr>
<tr>
<td>>10 years</td>
<td>221</td>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>Marital status:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living together</td>
<td>255</td>
<td>7</td>
<td>0-30</td>
</tr>
<tr>
<td>Living alone</td>
<td>174</td>
<td>8</td>
<td>0-29</td>
</tr>
<tr>
<td>Charlson's index²:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>292</td>
<td>8.5</td>
<td>0.31</td>
</tr>
<tr>
<td>1-2</td>
<td>112</td>
<td>4</td>
<td>0-26</td>
</tr>
<tr>
<td>3+</td>
<td>25</td>
<td>17</td>
<td>0-50</td>
</tr>
<tr>
<td>GP's symptom interpretation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm symptom</td>
<td>135</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td>Serious symptom</td>
<td>143</td>
<td>6</td>
<td>0-21</td>
</tr>
<tr>
<td>Vague symptoms</td>
<td>149</td>
<td>28</td>
<td>10-62</td>
</tr>
<tr>
<td>Use of fast-track route:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>178</td>
<td>7</td>
<td>1-23</td>
</tr>
<tr>
<td>No</td>
<td>245</td>
<td>9</td>
<td>0-37</td>
</tr>
</tbody>
</table>

¹Years of education. ²Index date: day before first contact to GP.

Effect of gender, age, education, comorbidity and marital status are mutually adjusted. GP's symptom interpretation and use of fast-track are adjusted for gender, age, education, comorbidity and marital status.
PAPER II

Reduced specialist time with direct computed tomography for suspected lung cancer in primary care

Guldbrecht LM, Fenger-Grøn M, Folkersen BH, Rasmussen TR, Vedsted P

Published in the Danish Medical Journal (December 2013)
Reduced specialist time with direct computed tomography for suspected lung cancer in primary care

Louise Mahncke Guldbrandt1, 2, Morten Fenger-Grøn1, Birgitte Holst Folkersen3, Torben Riis Rasmussen3 & Peter Vedsted1

ABSTRACT
INTRODUCTION: Lung cancer (LC) is the most common cause of cancer death in Denmark, and triaging patients through fast-track diagnostic pathways is recommended to improve patient outcome. Data on the most efficient triage organisation of such pathways are limited. The aim of this study was to test a strategy of a straight-to-test model for patients referred to the fast-track pathway. Outcomes were number of computed tomographies (CT) performed, use of specialist time and staff acceptability.

MATERIAL AND METHODS: We performed a randomised controlled study enrolling 493 patients who were referred from general practice to fast-track LC evaluation (1 January-5 December 2012). Half of the patients were randomly assigned to the intervention and went straight to a chest CT before chest-physician evaluation. Time was measured for patients at random days. Acceptability was examined in a focus group interview.

RESULTS: In the intervention group, 95.5% of patients had a CT performed compared with 97.2% in the control group. There was no difference in the number of CTs between the groups (risk difference (RD) = 21.3% (95% confidence interval (CI): 34.4-2.1, p = 0.454)). In the intervention group, chest-physician time was 13.3 min. (min.-max.: 7.7-19.5 min.) lower per referred patient than in the control group.

CONCLUSION: Giving general practitioners direct access to a CT did not change the number of CTs performed and significantly reduced chest-physician time per patient. In addition, the strategy was associated with high levels of staff acceptability.

FUNDING: The project was supported by the Danish Cancer Research Foundation, the Danish Cancer Society and the Novo Nordisk Foundation.

TRIAL REGISTRATION: ClinicalTrials.gov: NCT01779726.

Earlier detection and easier access to relevant investigations from primary care are key focus areas to improve cancer outcome. However, this requires more efficient delivery of specialised investigations. But how do we ensure timelessness and coherence of cancer treatment? In Denmark, the current solution is a cancer care pathway which was introduced in 2008 [1]. The pathway concerns every stage from suspicion of cancer through diagnosis and treatment to palliation or rehabilitation. One of the political and administrative requirements to the new scheme was that a specialist should see the patient before initiation of basic investigations. However, as general practitioners (GPs) are already gatekeepers to specialised care, this could be considered a “double gatekeeping system” which may cause inefficiency and delay. Thus, the remaining question is whether patients should go straight to investigation or first pass a specialist on their way.

In Denmark, lung cancer comprises approx. 12% of all new cancer cases [2]. Mortality from lung cancer is largely determined by the stage at diagnosis. If a GP has “reasonable suspicion” that the patient has cancer, the GP can refer the patient through the fast-track system. For lung cancer, “reasonable suspicion” would be based on either a chest X-ray or alarm symptoms (e.g. haemoptysis). In general practice, these symptoms have a low positive predictive value [3], and many patients therefore need evaluation if the cancers are to be diagnosed at an earlier stage with a better prognosis. The increasing demands for urgent referral and lower thresholds for referral of patients question the efficiency of the “double gatekeeping system” compared with a straight-to-test approach.

A common argument is that a straight-to-test model would generate unnecessary tests. However, a study from the Netherlands in 2011 with open access colonoscopy through GP referral found only a slight increase in the number of requested diagnostic colonoscopies, but a marked decrease in median time from first diagnostic test to surgical treatment [4].

In a randomised unblinded study, we aimed to test and measure a diagnostic strategy involving a straight-to-test model for patients referred to the lung cancer fast-track diagnostic pathway. Outcome measures were number of computed tomographies (CTs) performed, use of specialist time and staff acceptability.

MATERIAL AND METHODS
Design
We performed a randomised, two-arm (1:1) controlled study testing CTs before evaluation by chest physician compared with usual practice.

Participants
Patients referred exclusively from general practice to...
fast-track evaluation during the period from 1 January to 1 December 2012 were enrolled in the study. There were no exclusion criteria.

Study setting
The study was performed in a single setting at the Department of Pulmonary Medicine, Aarhus University Hospital. The department is highly specialised in lung cancer detection and engages in close teamwork with specialists from Radiology, Clinical Oncology and Thoracic Surgery. The department covers approx. 140 general practices with 400 GPs. On average, the department evaluates 650 fast-track referrals from general practice annually. After reading the referral note, a chest physician triages the patient to an outpatient evaluation within three working days. If the chest physician shares the GP's suspicion of lung cancer, a CT of chest and upper abdomen (with intravenous contrast) is performed. Such CTs are reviewed by a chest physician and a radiologist on daily meetings. The initial diagnostic work-up (Table 1) is scheduled for three working days (not including visitation). In the intervention group, the patients were allocated a direct CT including information provided by a nurse prior to the CT (Table 1), unless at visitation the chest physician had reasons to see the patient prior to the CT (e.g. low cancer suspicion).

Outcomes
The proportion of patients who had a CT performed was measured. Data were obtained from the electronic patient record.

Chest-physician time per patient: We measured the consultation time for a three-week period (November 2012). All types of consultations in the period were measured. Data were obtained from the electronic patient record.

Table 1

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Description of diagnostic work-up in fast track (usual and intervention).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit</td>
<td>Usual work-up</td>
</tr>
<tr>
<td>Outpatient visit</td>
<td>By chest physician</td>
</tr>
<tr>
<td>Patient history-taking</td>
<td>By chest physician</td>
</tr>
<tr>
<td>Lung function test</td>
<td>By nurse</td>
</tr>
<tr>
<td>Blood tests</td>
<td>By laboratory</td>
</tr>
<tr>
<td>CT</td>
<td>Chest, upper abdomen</td>
</tr>
</tbody>
</table>

CT = computed tomography

a) At visitation some patients are allocated an outpatient visit before CT.

minutes from the point at which the patient went into the physician consultation room until the patient left the room.

Staff acceptability was studied by a focus group interview made on the basis of a structured interview guide.

Randomisation
For practical feasibility, we chose to perform the randomisation prior to the study period in one procedure in which all potential patients born in even months (January, April, June, August, October and December) were allocated to the intervention group and patients born in odd month were controls. Technically speaking, this could be termed a block randomisation. However, as the allocation according to birth (odd or even month) must be considered at least quasi-random, we regard such distinction superfluous for the present purpose.

Data
Patients referred to fast-track evaluation for lung cancer are coded O2 031.8 (lung cancer observation). Patients with this code and a GP ID number were identified. The Danish civil registration number (CRN), a unique ten-digit personal identification number, was used to link registers [5]. We used the Danish Lung Cancer Register (DLCR) to gain information on any subsequent diagnosis of lung cancer (International Classification of Diseases (ICD) 10 34.0-9). The DLCR was established in 2001 as a national database. Since 2003, the registered data have covered more than 90% of all lung cancer cases in Denmark [6]. During the study period, the registration of patients in the DLCR was also checked against the hospital information system used to record registered diagnoses to ensure that no patients were missed.

We performed a focus group interview to clarify the feasibility of the new organisation. The interview was conducted by the principal investigators (LMG and PV) after the study had concluded. The informants were two consultants (chest physicians) and one pulmonary nurse engaged in the organisation of the fast-track diagnosis. The interview was recorded with the informant’s consent. The interview guide included open-ended questions focusing on the positive/negative characteristics of the traditional organisation in comparison to the new organisation. The informants were encouraged to provide details on changes seen from a health care professional’s perspective and to assess the medical quality of the services.

The interview lasted 45 min., and a summary was compiled at the end to obtain an immediate validation of the presentation of the themes identified by the researchers.
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

Statistical methods Patient groups were compared using the Wilcoxon’s rank-sum test for ordinal or continuous data or Pearson’s χ² test for unordered or dichotomous categorical data. The proportion of referred patients who did not receive a CT and the difference between groups were calculated and associated 95% confidence intervals (95% CIs) were assessed using a standard normal approximation. Patients were allocated to randomisation groups according to the intention-to-treat principle. For the mean difference of consumed consultant time, 95% CIs were computed using bias-corrected bootstrapping. Analyses were made using Stata 12.0.

Ethics The study was approved by the Danish Data Protection Agency (No: 2011-41-6872) and the Danish Health and Medicines Authority (No: 7-604-04-2/357/KWH). According to the Research Ethics Committee of the Central Denmark Region, the Danish Act on Research Ethics Review of Health Research Projects did not apply to this project. (No: 118/2011).

Trial registration: ClinicalTrials.gov: NCT01779726, ID: 118/2011.

RESULTS Study population A total of 508 patients were eligible. Before visitation, 15 controls received a CT and were therefore excluded. This group of patients did not differ from the remaining cohort according to age, gender or cancer incidence). Of the cohort, 246 (49.9%) were born in even months and formed the intervention group (Figure 1). The baseline data of the cohort are shown in Table 2. There were no statistically significant differences between the controls and the intervention group.

Outcomes Computed tomography In the intervention group, 236 (95.9%) patients had a CT. In total and regardless of the randomisation, 45 (18.3%) patients were triaged at visitation to the chest physician instead of a direct CT on the basis of the GP referral notes. After this evaluation, 35 (77.8%) patients had a CT and ten (22.2%) patients did not.

In the control group, 240 (97.2%) patients had a CT. A total of 34 (13.8%) patients had a CT before the evaluation, regardless of the randomisation.

In the control group, seven patients (2.8%) had no CT after evaluation by chest physician (95% CI: –4.4-2.0%; p = 0.454).

Chest-physician time per patient Time was measured at 48 consultations (Table 3) and the difference in time spent per patient was 13.3 min. (min.-max.: 7.7-19.5 min.) between the intervention group (one visit) and the control group (two visits). For every 100 patients evaluated in the fast track with direct CT, the department would save 22.2 h (min.-max.: 12.9-32.4 h) in comparison with the previous organisation.

Acceptance and possible side effects The focus group interview identified one definite disadvantage of the new organisation: ”The former programme implied an open-minded approach to our patients. Now we have the result of the CT already before we see the patient and patients with non-malignant CT images will promptly be referred to treatment by their GP” (physician 2).

The interview also identified advantages of the new organisation: ”The patients are very satisfied. They understand the logic behind first receiving the scan and subsequently seeing the doctor. This is a good thing for the patients” (nurse).
TABLE 2

<table>
<thead>
<tr>
<th></th>
<th>Intervention Group</th>
<th>Control Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit 1</td>
<td>(n = 19)</td>
<td>(n = 14)</td>
<td></td>
</tr>
<tr>
<td>Mean (min.-max.)</td>
<td>16.8 (10-25)</td>
<td>17.4 (10-25)</td>
<td>0.277</td>
</tr>
<tr>
<td>IQI</td>
<td>13-22</td>
<td>12-24</td>
<td>0.17</td>
</tr>
</tbody>
</table>

IQI = interquartile interval.

TABLE 3

<table>
<thead>
<tr>
<th></th>
<th>Intervention Group</th>
<th>Control Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 19)</td>
<td>(n = 14)</td>
<td></td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td>137 (55.7)</td>
<td>121 (53.0)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>137 (55.7)</td>
<td>121 (53.0)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>100 (44.3)</td>
<td>116 (47.0)</td>
<td></td>
</tr>
<tr>
<td>Age, yrs, mean (min.-max.)</td>
<td>64.2</td>
<td>63.1</td>
<td>0.386</td>
</tr>
<tr>
<td>0-39 yrs, n (%)</td>
<td>12 (6.3)</td>
<td>6 (3.6)</td>
<td></td>
</tr>
<tr>
<td>40-59 yrs, n (%)</td>
<td>77 (31.3)</td>
<td>85 (35.4)</td>
<td>0.832</td>
</tr>
<tr>
<td>60-79 yrs, n (%)</td>
<td>132 (68.4)</td>
<td>119 (48.2)</td>
<td></td>
</tr>
<tr>
<td>≥ 80 yrs, n (%)</td>
<td>35 (14.2)</td>
<td>34 (13.8)</td>
<td></td>
</tr>
<tr>
<td>CT, n (%)</td>
<td>236 (95.9)</td>
<td>240 (96.2)</td>
<td>0.921</td>
</tr>
<tr>
<td>Lung cancers, n (%)</td>
<td>22 (8.8)</td>
<td>25 (10.1)</td>
<td>0.277</td>
</tr>
</tbody>
</table>

CT = computed tomography.

DISCUSSION

Main findings

No differences were found in use of CTs between the new straight-to-CT scheme and the traditional organisation in which a chest physician saw the patient before the CT was performed. There was a decrease in time spent per patient. The new organisation was highly accepted and also, according to the staff, improved the patient experience.

By reading the referral notes from the GPs, the chest physicians were able to select only 3.4% of patients for whom a CT was not found necessary. This implies that the GPs were, indeed, able to select patients properly for CTs.

Strengths and limitations

The strength of this study was the randomised design that resulted in two comparable groups with no statistically significant differences between the intervention and the control group. We were able to measure outcomes during one time period for two different organisations rather than making e.g. before-after-comparisons or comparisons between two settings.

A potential weakness is the randomisation (based on birth month) of patients before study inclusion. If GPs had been aware of this, they may have used the diagnostic system differently according to the patient randomisation. However, the GPs were unaware of the study.

A limitation was that we measured only time for a sample of the patients. We chose this approach to approximate the time spent per patient in a period in which the two different organisations had been running for some time, and we believe that this time per consultation was stable throughout the entire study period.

This study did not aim to measure time intervals in the diagnostic process. However, we found that the new organisation caused no additional treatment delay.

Generalisability

The findings should be interpreted carefully since outpatient clinics are organised differently around the world. Still, the decrease in use of specialist time may be generalised to other settings.

Comparison with other studies

A few studies have analysed the effect of straight-to-test versus traditional referral to secondary care. A British retrospective comparative study from 2011 found that straight access to CT after abnormal X-ray reduced the diagnostic delay without significantly increasing the overall proportion of patients undergoing CT (from 87% before to 92% after) [7]. Similar results were found in a study from the Netherlands in 2011 [4], where open access to colonoscopy from primary care was found to reduce the diagnostic interval with only a minor increase in number of endoscopies.

A British study from 2009 rejected a straight-to-test system. This prospective study on patients referred through a fast-track route for colorectal cancer found that the requested test types, which were based on the GP referral letter, were changed after an outpatient visit in 31% of the cases [8].

CONCLUSION

We demonstrated that a straight-to-test approach for handling fast-track lung cancer investigation was possible without causing an increase in the number of CTs performed. The strategy led to a reduction in chest medical consultation hours involving a doctor; hours that we can spend on the patients in need of care” (physician 1).

“The new organization provides greater flexibility for the unit when scheduling the daily programme. Patients can be seen by a nurse while the doctor is engaged elsewhere” (physician 2).

No differences were found in use of CTs between the new straight-to-CT scheme and the traditional organisation in which a chest physician saw the patient before the CT was performed. There was a decrease in time spent per patient. The new organisation was highly accepted and also, according to the staff, improved the patient experience.

By reading the referral notes from the GPs, the chest physicians were able to select only 3.4% of patients for whom a CT was not found necessary. This implies that the GPs were, indeed, able to select patients properly for CTs.
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

physician time spent per patient. This was accomplished with a high acceptability and provided a better patient experience according to the staff.

CORRESPONDENCE: Louise Mahncke Guldbrandt, Center for Forskning i Cancerdiagnostik i Praksis, Forskningsenheden for Almen Praksis, Aarhus Universitet, Bartholins Alle 2, 8000 Aarhus C, Denmark.
E-mail: louise.mahncke@alm.au.dk

ACCEPTED: 24 September, 2013

CONFLICTS OF INTEREST: Disclosure forms provided by the authors are available with the full text of this article at www.danmedj.dk.

LITERATURE
PAPER III

Implementing direct access to low-dose computed tomography in general practice

Guldbrandt LM, Rasmussen TR, Rasmussen F, Vedsted P

Published in PLOS One
(November 2014)
Implementing Direct Access to Low-Dose Computed Tomography in General Practice—Method, Adaptation and Outcome

Louise Mahncke Guldbrandt1,2*, Torben Riis Rasmussen3, Finn Rasmussen4, Peter Vedsted1

1Research Centre for Cancer Diagnosis in Primary Care, Research Unit for General Practice, Aarhus University, Aarhus, Denmark, 2Section for General Medical Practice, Department of Public Health, Aarhus University, Aarhus, Denmark, 3Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark, 4Department of Radiology, Aarhus University Hospital, Aarhus, Denmark

Abstract

Background: Early detection of lung cancer is crucial as the prognosis depends on the disease stage. Chest radiographs has been the principal diagnostic tool for general practitioners (GPs), but implies a potential risk of false negative results, while computed tomography (CT) has a higher sensitivity. The aim of this study was to describe the implementation of direct access to low-dose CT (LDCT) from general practice.

Methods: We conducted a cohort study nested in a randomised study. A total of 119 general practices with 266 GPs were randomised into two groups. Intervention GPs were offered direct access to chest LDCT combined with a Continuing Medical Education (CME) meeting on lung cancer diagnosis.

Results: During a 19-month period, 648 patients were referred to LDCT (0.18/1000 adults on GP list/month). Half of the patients needed further diagnostic work-up, and 15 (2.3%, 95% CI: 1.3–3.8%) of the patients had lung cancer; 60% (95% CI: 52.3–83.7%) in a localised stage. The GP referral rate was 61% higher for CME participants compared to non-participants.

Conclusion: Of all patients referred to LDCT, 2.3% were diagnosed with lung cancer with a favourable stage distribution. Half of the referred patients needed additional diagnostic work-up. There was an association between participation in CME and use of CT scan. The proportion of cancers diagnosed through the usual fast-track evaluation was 2.2 times higher in the group of CME-participating GPs. The question remains if primary care case-finding with LDCT is a better option for patients having signs and symptoms indicating lung cancer than a screening program. Whether open access to LDCT may provide earlier diagnosis of lung cancer is yet unknown and a randomised trial is required to assess any effect on outcome.

Trial Registration: Clinicaltrials.gov NCT01527214

Background

Lung cancer is the leading cause of cancer death among men on a global basis. For women, it is the second leading cause of cancer death [1]. Annually, 4400 patients with lung cancer are diagnosed in Denmark [2]. Disease stage at diagnosis is an important prognostic factor as an advanced stage reduces the opportunity for curative treatment. Therefore, it is crucial to reduce the proportion of lung cancers diagnosed at an advanced stage; in Denmark, advanced-stage cancers account for 70% of all new lung cancers.

In order to reduce the time interval from the first presentation to the healthcare system until treatment, Denmark introduced a fast-track referral program for cancer in 2008 [3,4]. In this program, Danish general practitioners (GPs) can refer patients with “reasonable suspicion” of lung cancer to a fast-track evaluation, a maximum of 72 hours waiting time. Unfortunately, only 25% of Danish lung cancer patients are referred and diagnosed through this fast-track pathway, which is similar to the level of the UK [5–7]. Studies indicate that lung cancer patients have several pre-referral consultations in primary care [8,9]. This could be based on the fact that many lung cancer patients seem to present with unspecific, vague or low-risk-but-not-no-risk symptoms [10]. This implies that GPs need additional tools than the fast-track in order to ensure early diagnosis of lung cancer. The answer could be direct access to a sensitive diagnostic investigation.

The principal-diagnostic tool available for the GP has for many years been a chest radiograph. However, since about 20% of all...
Intervention

Participants

Design

Methods

Setting

Participants

Intervention

Direct Access to Chest CT from General Practice

PLOS ONE | www.plosone.org 2 November 2014 | Volume 9 | Issue 11 | e112162

lung cancer patients have normal radiographs before diagnosis [11–13], a false negative radiograph may postpone the diagnosis [11]. Thus, an open direct access should perhaps be combined with a technological update in use of Computed Tomography (CT) technology.

In screening trials, low-dose CT is used under the presumptions that 1) lung cancer presents as non-calcified nodules, 2) low-dose CT accurately detects these nodules, and 3) detection of early-stage disease improves prognosis. From screening studies in high-risk patients, we already know that approx. 27% of the first-round screened patients needed follow-up scans [14,15]. On the other hand, we do not know the same figures for symptomatic patients visiting their GP. Likewise, we do not know whether the GPs will use direct access to CT when offered the opportunity or (if positive) which patients they will refer. Such data should be available before chest LDCTs are introduced as a routine test for patients with respiratory symptoms.

The aim of this study was to describe the usage and outcome of a technological and organisational upgrade in the form of a brief GP update and implementing direct access to chest CT from general practice for patients with respiratory symptoms. Furthermore, to analyse the association between participating in the update, use of CT scans and referrals for lung cancer suspicion.

The sample size was calculated for the randomised trial and the numbers of GPs needed in the intervention arm was guided by the calculation. In 2008, half of the Danish lung patients waited 34 days or more (the median) from first presentation to primary care until diagnosis of lung cancer [19]. We hoped to be able to show a decrease in the diagnostic interval to a level where only 25% of the patients had to wait for 34 days or more. Thus, the proportion waiting 34 days or more should be halved. With a one-sided alpha of 5% and a power of 80%, we had to include 54 lung cancer patients in each arm with a 1:1 randomisation. It can be assumed that lung cancer patients are randomly distributed among GPs. There could, however, be a higher incidence of cancer in some areas with many smokers and in practices with many elderly

The Department of Radiology, Aarhus University Hospital, carried out the CTs. Scans were performed on a Brilliance 64 CT Scanner by Philips with a beam collimation of 64×0.625, 2 mm slice thickness, 1 mm increment, 1 pitch and a rotation time of 0.75 s. The effective radiation dose (Monte Carlo simulation program CT-Expo v. 2.1) was 2–3 mSv. Intravenous contrast medium was not administered. The time limit from referral to performed CT was a maximum of two working days.

The CT report was made by three sub-specialised radiologists. The day after the scan, the report combined with the patient's medical history resulted in a recommendation drawn up at a conference between radiologists and chest physicians. This recommendation was forwarded electronically to the GP, who was responsible for informing the patient of the results and referring the patient to further diagnostic workup if necessary.

If lung nodules (4–10 mm), which could not be categorised as benign, were detected, the GP was responsible for referring the patient to a follow-up program (5, 6 or 12 months after the first scan) based on characteristics of the identified nodules [17]. The follow-up program was decided by the chest physicians. If the CT scan revealed any suspicion of lung cancer, the patients were referred through the fast track to standard diagnostic workup at the Department of Pulmonary Medicine by the GP. This included contrast enhanced multi detection CT (including PET/CT if surgery was an option). Furthermore, histologic/ cytologic diagnosis was obtained by the least invasive method, which was usually either bronchoscopy with biopsies, fine needle aspiration (FNA) in association with endoscopic ultrasound or endobronchial ultrasound, or transbronchic FNA. The final staging was decided by a multi-disciplinary team based on clinical (TNM) information. The lung cancers were staged according to the 7th TSNM Classification of Malignant Tumors [18]. Early stage cancers were defined as stage I–II B. Early stage patients were offered surgical resection according to Danish guidelines.

The study took place in a large catchment area around Aarhus University Hospital in the Central Denmark Region during 19 months (November 2011 to June 2013).

The study was described and approved by the Regional Scientific Ethical Committee. It was approved by the Danish Data Protection Agency. All participating GPs signed an informed consent form before inclusion.

The Department of Radiology, Aarhus University Hospital, the University Hospital in the Central Denmark Region during 19 months (November 2011 to June 2013), and The Danish Lung Cancer Registry, freely provided all the data. This study was funded by the Danish Cancer Society.

The sample size was calculated for the randomised trial and the numbers of GPs needed in the intervention arm was guided by the calculation. In 2008, half of the Danish lung patients waited 34 days or more (the median) from first presentation to primary care until diagnosis of lung cancer [19]. We hoped to be able to show a decrease in the diagnostic interval to a level where only 25% of the patients had to wait for 34 days or more. Thus, the proportion waiting 34 days or more should be halved. With a one-sided alpha of 5% and a power of 80%, we had to include 54 lung cancer patients in each arm with a 1:1 randomisation. It can be assumed that lung cancer patients are randomly distributed among GPs. There could, however, be a higher incidence of cancer in some areas with many smokers and in practices with many elderly

If the CT scan revealed any suspicion of lung cancer, the patients were referred through the fast track to standard diagnostic workup at the Department of Pulmonary Medicine by the GP. This included contrast enhanced multi detection CT (including PET/CT if surgery was an option). Furthermore, histologic/ cytologic diagnosis was obtained by the least invasive method, which was usually either bronchoscopy with biopsies, fine needle aspiration (FNA) in association with endoscopic ultrasound or endobronchial ultrasound, or transbronchic FNA. The final staging was decided by a multi-disciplinary team based on clinical (TNM) information. The lung cancers were staged according to the 7th TSNM Classification of Malignant Tumors [18]. Early stage cancers were defined as stage I–II B. Early stage patients were offered surgical resection according to Danish guidelines.

The sample size was calculated for the randomised trial and the numbers of GPs needed in the intervention arm was guided by the calculation. In 2008, half of the Danish lung patients waited 34 days or more (the median) from first presentation to primary care until diagnosis of lung cancer [19]. We hoped to be able to show a decrease in the diagnostic interval to a level where only 25% of the patients had to wait for 34 days or more. Thus, the proportion waiting 34 days or more should be halved. With a one-sided alpha of 5% and a power of 80%, we had to include 54 lung cancer patients in each arm with a 1:1 randomisation. It can be assumed that lung cancer patients are randomly distributed among GPs. There could, however, be a higher incidence of cancer in some areas with many smokers and in practices with many elderly

The aim of this study was to describe the usage and outcome of a technological and organisational upgrade in the form of a brief GP update and implementing direct access to chest CT from general practice for patients with respiratory symptoms. Further-

In screening trials, low-dose CT is used under the presumptions that 1) lung cancer presents as non-calcified nodules, 2) low-dose CT accurately detects these nodules, and 3) detection of early-stage disease improves prognosis. From screening studies in high-risk patients, we already know that approx. 27% of the first-round screened patients needed follow-up scans [14,15]. On the other hand, we do not know the same figures for symptomatic patients visiting their GP. Likewise, we do not know whether the GPs will use direct access to CT when offered the opportunity or (if positive) which patients they will refer. Such data should be available before chest LDCTs are introduced as a routine test for patients with respiratory symptoms.

The aim of this study was to describe the usage and outcome of a technological and organisational upgrade in the form of a brief GP update and implementing direct access to chest CT from general practice for patients with respiratory symptoms. Further-

In screening trials, low-dose CT is used under the presumptions that 1) lung cancer presents as non-calcified nodules, 2) low-dose CT accurately detects these nodules, and 3) detection of early-stage disease improves prognosis. From screening studies in high-risk patients, we already know that approx. 27% of the first-round screened patients needed follow-up scans [14,15]. On the other hand, we do not know the same figures for symptomatic patients visiting their GP. Likewise, we do not know whether the GPs will use direct access to CT when offered the opportunity or (if positive) which patients they will refer. Such data should be available before chest LDCTs are introduced as a routine test for patients with respiratory symptoms.
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

Direct Access to Chest CT from General Practice

Outcome variables

Primary outcomes were characteristics of patients referred and GP variation in use, while secondary outcomes were amount of diagnostic workup needed and cancer incidence. Finally, we examined the use of the fast-track referral option for suspected lung cancer and the proportion of lung cancer (the positive predictive value (PPV)) in order to evaluate the possible effect of the CME on this aspect.

Data

Based on the GP's referral notes, we obtained data on the patients’ symptoms, known diseases and smoking history. We obtained the medical records resulting from completed CT scans, including the consensus evaluation between radiologist and pulmonary physician.

The Danish Lung Cancer Register (DLCR) was used for information on subsequent diagnosis of lung cancer (International Classification of Diseases 10: C34.0-9). The DLCR was established in 2001 as a national data-base. Since 2003, the registered data have covered more than 90% of all lung cancer cases in Denmark [21].

Patients referred to fast-track evaluation for lung cancer are coded DZ 03.1B (lung cancer observation). This code, combined with a unique GP number, gave information about referral to the fast-track pathway.

The Danish Cancer Register (DCR) was used to obtain information about previous cancer (except non-melanoma skin cancer (C44)). The registry contains information about Danish cancer patients, their date of diagnosis and tumour characteristics. Since 1987, reporting to the DCR has been mandatory [22].

We used the Danish Deprivation Index (DADI) to gather information about deprivation rates in the different GP clinics. The index consists of eight variables resulting in a value number between 10 and 100, the higher the number, the greater the extent of deprivation in the practice population. The variables used are: (i) proportion of adults aged 20–59 with no employment, (ii) proportion of adults aged 25–59 with no professional education, (iii) proportion of adults aged 25–59 with low income, (iv) proportion of adults aged 30–59 receiving public welfare payments (transfer income or social benefits), (v) proportion of children from parents with no education and no professional skills, (vi) proportion of immigrants, (vii) proportion of adults aged 70+ living alone and (viii) proportion of adults aged 25–74+ with low income (≤ the lowest national quartile).

The Health Service Registry was used to gather information about GP list size and age/gender distribution of the patients listed with the GP [23]. The Danish civil registration number, a unique personal identification number, was used to link registers [24].

Statistical analyses

Patient characteristics were described and duration of symptoms was calculated as medians with interquartile intervals (IQI). GP groups were compared using the Wilcoxon’s rank-sum test for ordinal or continuous data or Pearson χ² test for unordered or dichotomous categorical data.

Referral rates were calculated based on number of patients referred by the GP per project month per list size (patients aged 25 years and above). We used indirect sex-age standardisation to compare the referral rates between CME-attending GPs and non-attending GPs. We used the CME-attending GPs as the standard population and calculated the referral rates for the patients listed with the GPs in 10-years age groups (25–34, 35–44, etc.). These expected rates were then applied to the non-attending GP list. We calculated the standardised referral rate ratio as number of referrals divided by expected numbers if the age-sex specific rates were the same as those of the standard population. The age-sex referral rate was then obtained by multiplying the referral rate ratio by the crude referral rate of the standard population.

Data were analysed using the statistical software Stata 12.0 (StataCorp LP, TX, USA).

The protocol for the randomised trial and supporting TREND checklist for this study are available as supporting information; see Checklist S1 and Protocol S1.

Ethics

The study was approved by the Danish Data Protection Agency (ref.no. 2011-41-6372) and the Danish Health and Medicines Authority (ref.no. 7-604-04-2/3357/KWH). According to the Research Ethics Committee of the Central Denmark Region, the Danish Act on Research Ethics Review of Health Research Projects did not apply to this project (ref.no. 116/2011) as CT is already a widely used technology.

Results

Patients referred

During the study period of 19 months, 649 patients were referred from general practice to direct CT. One patient (0.15%) did not turn up to scan, resulting in 648 performed CTs. The mean age of scanned patients was 62.1 years (Standard Deviation (SD): 12.3; range: 21–95 years) (Table 1). The mean number of pack years for all smokers (current and former) was 34.5 (SD: 14.4, range: 2–100), and 87 (13.4%, 95% CI: 10.9–16.3%) had never smoked. The most prominent symptom was coughing (78.2%, 95% CI: 74.9–81.4%). The duration of symptoms varied from a median of 1.5 weeks (haemoptysis) to a median of 8.0 weeks (coughing) (Table 2). For 124 (19.1%, 95% CI: 16.2–22.4%) patients, a known lung disease (mostly COPD) was stated in the referral letter (Table 1).

GP participants

A total of 133 GPs had access to direct CT (Figure 1). The possible GP, who did not use the possibility of direct CT, was unadjusted GP referral rate was 0.18 per 1000 patients (20–59 years of age) per month.

There was no difference in GP age, gender, type of clinic (solo or more GPs together), list size or levels of deprivation in relation to the use of CT scans. In total, 64 (48.1%, 95% CI: 39.4–56.9%) of the GPs participated in the CME meeting. The referral rate to direct CT was statistically significantly higher among GPs working in a clinic with one or more CME-participating GPs. When adjusting for age, gender and list size, the referral rate was 61% higher (95% CI: 54–66%) for GPs working in a clinic with one or more CME-participating GPs than the referral rate for non-participating GPs.
The study GPs referred 335 patients to the lung cancer fast-track during the study period, and this resulted in 33 lung cancer diagnoses (PPV 10.2%, 95% CI: 7.2–13.9%). The stage distribution was as follows: 8 (23.5%, 95% CI: 10.7–41.2%) were in early stage and 26 (76.5%, 95% CI: 58.8–89.3%) with advanced disease.

The unadjusted referral rate to fast-track was 0.13 per 1000 adults listed with the GP per month (95% CI: 0.09–0.20). The referral rate was 0.13 (95% CI: 0.09–0.19) for CME-participating GPs compared with 0.14 (95% CI: 0.09–0.20) for non-participating GPs (p-value: 0.503). The PPV for lung cancer diagnosis as a result of referral to a fast-track lung cancer pathway was 13.3% (95% CI: 8.7–19.1%) for CME-participating GPs and 6.1% (95% CI: 3.0–11.0%) for non-participating GPs (p-value: 0.027), which is equivalent to a 2.2 higher PPV.

Evaluation and conclusions

Of the 648 patients who underwent CT, 234 (36.1%, 95% CI: 32.0–40.0%) patients had a normal scan (Table 4), while lung nodules were found in 147 patients (22.7%, 95% CI: 19.5–26.1%) with advanced disease. The unadjusted referral rate to fast-track was 0.13 per 1000 adults listed with the GP per month (95% CI: 0.09–0.20). The referral rate was 0.13 (95% CI: 0.09–0.19) for CME-participating GPs compared with 0.14 (95% CI: 0.09–0.20) for non-participating GPs (p-value: 0.503). The PPV for lung cancer diagnosis as a result of referral to a fast-track lung cancer pathway was 13.3% (95% CI: 8.7–19.1%) for CME-participating GPs and 6.1% (95% CI: 3.0–11.0%) for non-participating GPs (p-value: 0.027), which is equivalent to a 2.2 higher PPV.

Definitive diagnoses made from baseline scans

Thirty (4.6%, 95% CI: 3.1–6.5%) patients were diagnosed with a severe lung disease (tuberculosis, sarcoidosis or interstitial lung disease). Fifteen (2.3%, 95% CI: 1.3–3.8%) had a non-small cell lung cancer (NSCLC), and none had a small cell lung cancer (SCLC). Stage distribution was as follows: nine (60%, 95% CI: 32.3–83.7%) in early stage and six (40%, 95% CI: 16.3–67.7%) with advanced disease. Six (40.0%, 95% CI: 16.3–67.7%) were stage I tumours. Eight (12.1%) other cancers were diagnosed (three breast cancers, two lymphomas, one rectal cancer, one hepatocellular carcinoma and one mesothelioma).

Discussion

Main results

During the study period, 648 patients were referred to a direct LDCT. The most prominent symptom was coughing with a median duration of two months. Half of the patients needed further diagnostic work-up and 2.3% had lung cancer; 60% in early stage.

Two thirds of the GPs used the direct access to LDCT. CME-participating GPs had a 61% higher CT referral rate than non-participating GPs. CME participation was not associated with increased use of lung cancer fast-track pathways, but was, however, associated with a more than doubled positive predictive value.

Table 1. Clinical characteristics of the 648 patients referred to direct CT scan from general practice.

<table>
<thead>
<tr>
<th>Gender:</th>
<th>N (%)</th>
<th>Mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>314 (48.5)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>334 (51.5)</td>
<td></td>
</tr>
</tbody>
</table>

Age all: 648 62.1 (61.2–63.1)

Age groups:
- 20–45 yr: 62 (9.6)
- 46–65 yr: 320 (49.3)
- 66–85 yr: 266 (41.1)

Smoking status:
- Never: 87 (13.8)
- Current: 257 (40.7)
- Former: 131 (20.7)
- Missing: 157 (24.8)

Pack years:
- All smokers: 133 34.5 (31.6–37.5)
- Current: 89 38.1 (34.6–41.7)
- Former: 44 21.1 (23.0–31.2)

Known lung disease:
- All: 124 (19.1)
- Previous cancer:
 - ≥10 years: 34 (5.2)
 - <10 years: 34 (5.2)

1 Of all patients
2 Listed in DCR before study start (either ≥10 years before study or within 10 years).

doi:10.1371/journal.pone.0112162.t001

Table 4.

<table>
<thead>
<tr>
<th>N (%)</th>
<th>Mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>314 (48.5)</td>
</tr>
<tr>
<td>Female</td>
<td>334 (51.5)</td>
</tr>
</tbody>
</table>

Age all: 648 62.1 (61.2–63.1)

Age groups:
- 20–45 yr: 62 (9.6)
- 46–65 yr: 320 (49.3)
- 66–85 yr: 266 (41.1)

Smoking status:
- Never: 87 (13.8)
- Current: 257 (40.7)
- Former: 131 (20.7)
- Missing: 157 (24.8)

Pack years:
- All smokers: 133 34.5 (31.6–37.5)
- Current: 89 38.1 (34.6–41.7)
- Former: 44 21.1 (23.0–31.2)

Known lung disease:
- All: 124 (19.1)
- Previous cancer:
 - ≥10 years: 34 (5.2)
 - <10 years: 34 (5.2)

1 Of all patients
2 Listed in DCR before study start (either ≥10 years before study or within 10 years).

doi:10.1371/journal.pone.0112162.t001

The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

Strength and limitations

A major strength of this study is the well-defined study population of a considerable size of patients. The data obtained from the referral letters and the CT records were complete as were data on GP participation in the CME on lung cancer.

However, a limitation is that we have no knowledge about the kind of diagnostic tool (e.g. plain chest film or fast-track) applied by the GP if (s)he had not had the opportunity of referral to direct CT scan.

The reported results are based on the baseline CT scan. A follow-up study is needed to gain information on lung cancers diagnosed from the repetitive CTs on nodule follow-up indications.

This study was not designed to answer whether a direct LDCT from general practice would reduce the mortality of lung cancer. A high proportion of the lung cancers diagnosed in this study were identified in an early stage, but this is not an advantage in itself. Early-state identification is beneficial only if the frequency of late-stage cancers is reduced, and this will be analysed in a randomised trial including all lung cancers in the study period.

The present study utilised low-dose CT as the diagnostic tool for lung cancer. CT has a high sensitivity, but a lower specificity. This implies that the method involves risk of patient distress because of a relative high number of false positive scans. Furthermore, a widespread concern is the risk of cancer secondary to radiation from the low-dose CTs and subsequent imaging used to evaluate positive screens. A US study from 2013 addresses this problem in connection to low-dose CT screening studies [25]. Based on epidemiological data on radiation exposure they calculate that if assuming annual low-dose CT from age 55 to age 74 (20 scans), the lifetime attributable risk of lung cancer mortality is estimated to be 0.07% for males and 0.14 for females. One single low-dose CT utilizes not even half of the total annual radiation exposure from natural and human made sources. In addition, the group of patients referred to a low-dose CT may be among those with a higher risk of having lung cancer or other important diseases and the small radiation dose may contribute only very little to the other risks these patients face.

Generalisability

This Danish single setting with complete inclusion of patients holds the opportunity to generalise the study results to other settings in Denmark, possibly even to other countries in which general practice serves as the first line of healthcare.

Comparison with other studies

In this study, symptomatic patients consulted general practice and the GP referred them to a direct CT scan; 2.3% of the patients were consequently diagnosed with lung cancer. In a US screening study (NLST) (2002–2004) including participants aged 55–74 with at least 30 pack-years [15], 1.1% had lung cancer at baseline. The authors reported 55% stage I cancers compared to 40% in our study. In the screening study, 27.9% of the patients needed follow-up scans. This is comparable to our numbers. Similar results were seen in the Danish randomized lung cancer CT screening trial (DLCST) (2004–2006) [26], which included participants aged 55–74 with at least 30 pack-years, 1.1% had lung cancer at baseline. The authors reported 55% stage I cancers compared to 40% in our study. In the screening study, 27.9% of the patients needed follow-up scans. This is comparable to our numbers. Similar results were seen in the Danish randomized lung cancer CT screening trial (DLCST) (2004–2006) [26], which included participants aged 55–74 with at least 30 pack-years, 0.83% of the participants were diagnosed with lung cancers (55% in stage I).

Compared with the screening trials, our study had a wide and GP-based inclusion for referral. By limiting GP access to the CTs

Table 2. Symptoms written on referral letters of the 648 patients referred to direct CT scan from general practice.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>N (%)</th>
<th>Median (IQR, min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal symptoms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td>507 (78.2)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>309</td>
<td>8 (6–12, 1–104)</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>170 (26, 2)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>76</td>
<td>8 (5.5–12, 1–105)</td>
</tr>
<tr>
<td>Expectation</td>
<td>165 (25.5)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>69</td>
<td>8 (4–12, 1–104)</td>
</tr>
<tr>
<td>Throat pain</td>
<td>66 (10, 2)</td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>46</td>
<td>4.5 (4–12, 1–52)</td>
</tr>
<tr>
<td>Haemoptysis</td>
<td>51</td>
<td>(7.9)</td>
</tr>
<tr>
<td>Duration</td>
<td>18</td>
<td>1.5 (7–3, 0–12)</td>
</tr>
<tr>
<td>Haemorrhage</td>
<td>25</td>
<td>(3.9)</td>
</tr>
<tr>
<td>Duration</td>
<td>20</td>
<td>8 (4–6, 2–40)</td>
</tr>
<tr>
<td>General symptoms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>85</td>
<td>(13.1)</td>
</tr>
<tr>
<td>Duration</td>
<td>42</td>
<td>6 (4–12, 2–26)</td>
</tr>
<tr>
<td>Weight loss</td>
<td>79</td>
<td>(12.2)</td>
</tr>
<tr>
<td>Duration</td>
<td>45</td>
<td>8 (4–12, 1–52)</td>
</tr>
<tr>
<td>Impaired general condition</td>
<td>48</td>
<td>(7.4)</td>
</tr>
<tr>
<td>Duration</td>
<td>18</td>
<td>4 (4–6, 2–40)</td>
</tr>
</tbody>
</table>

1 Of all patients
2 Inter quartile interval.
3 Duration in weeks. Some missing data.

doi:10.1371/journal.pone.0112162.t002
Table 3. The characteristics of the GPs in the intervention group, their use of CT and participation in CME.

<table>
<thead>
<tr>
<th></th>
<th>All GPs, No (%)</th>
<th>CT not used</th>
<th>CT used</th>
<th>p-value</th>
<th>CME participant</th>
<th>Not CME participant</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All GPs, No (%)</td>
<td>133 (68.4)</td>
<td>42 (31.6)</td>
<td>91 (68.4)</td>
<td>0.001</td>
<td>64 (48.1)</td>
<td>69 (51.9)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female, No (%)</td>
<td>65 (48.9)</td>
<td>18 (27.7)</td>
<td>47 (72.3)</td>
<td>0.318</td>
<td>31 (47.7)</td>
<td>34 (52.3)</td>
<td></td>
</tr>
<tr>
<td>Male, No (%)</td>
<td>68 (51.1)</td>
<td>24 (35.3)</td>
<td>44 (63.7)</td>
<td>1.000</td>
<td>33 (48.5)</td>
<td>35 (51.5)</td>
<td></td>
</tr>
<tr>
<td>Age, mean (range)</td>
<td>53.6 (35–66)</td>
<td>54.2 (38–66)</td>
<td>53.4 (35–66)</td>
<td>0.613</td>
<td>54.2 (39–66)</td>
<td>53.1 (35–66)</td>
<td>0.456</td>
</tr>
<tr>
<td>Practice type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One GP, No (%)</td>
<td>21 (35.0)</td>
<td>11 (52.4)</td>
<td>10 (47.6)</td>
<td>0.090</td>
<td>13 (47.7)</td>
<td>13 (52.3)</td>
<td></td>
</tr>
<tr>
<td>Two or more GPs, No (%)</td>
<td>39 (65.0)</td>
<td>11 (28.2)</td>
<td>28 (71.8)</td>
<td></td>
<td>24 (61.5)</td>
<td>15 (38.5)</td>
<td>0.107</td>
</tr>
<tr>
<td>Practice list size/GP Median (range)</td>
<td>1033 (385–2710)</td>
<td>997 (385–1520)</td>
<td>1012 (385–2780)</td>
<td>0.794</td>
<td>1056 (393–2780)</td>
<td>963 (385–1527)</td>
<td>0.080</td>
</tr>
<tr>
<td>Number of patients scanned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per GP, Median (IQI)</td>
<td>2 (1–5)</td>
<td>0 (0–4)</td>
<td>3 (2–8)</td>
<td><0.001</td>
<td>3 (1–4)</td>
<td>1 (0–3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Per practice, Median (IQI)</td>
<td>6 (1–22)</td>
<td>0 (0–0)</td>
<td>17 (4–24)</td>
<td></td>
<td>17 (4–26)</td>
<td>3 (0–4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Referral rate, Median (IQI)</td>
<td>0.10 (0–0.30)</td>
<td>0 (0–0)</td>
<td>0.18 (0.09–0.40)</td>
<td><0.001</td>
<td>0.15 (0.05–0.59)</td>
<td>0.05 (0.0–0.18)</td>
<td><0.001</td>
</tr>
<tr>
<td>DADI3, Median (IQI)</td>
<td>25.4 (20.5–31.6)</td>
<td>26.5 (19.3–30.8)</td>
<td>25 (20.8–32.0)</td>
<td>0.947</td>
<td>24.1 (19.6–32.6)</td>
<td>26.0 (20.5–30.9)</td>
<td>0.920</td>
</tr>
<tr>
<td>CME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td>64 (48.1)</td>
<td>11 (17.2)</td>
<td>53 (82.8)</td>
<td><0.001</td>
<td>1</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>

1 If one GP in a clinic has participated in CME, all GPs in that clinic will count as CME participants.
2 Referral rate: patient referred/1000 patients in GP list (patients ≥25 years/project months).
3 Danish Deprivation Index (min: 10–max: 100).
4 Referral rate adjusted for age and gender distribution in GP list (patients ≥25 years).
5 Age-sex adjusted referral rate.

doi:10.1371/journal.pone.0112162.t003
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

Figure 1. Participants (GPs) flow.

Table 4. The evaluation of the 648 CT scans performed during the study period.

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Number</th>
<th>(%) of all scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>All scans</td>
<td>648</td>
<td>(100.0)</td>
</tr>
<tr>
<td>Abnormal scan</td>
<td>414</td>
<td>(63.9)</td>
</tr>
<tr>
<td>Nodules</td>
<td>147</td>
<td>(22.7)</td>
</tr>
<tr>
<td>Cancer suspicion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>84</td>
<td>(13.0)</td>
</tr>
<tr>
<td>Lung</td>
<td>71</td>
<td>(11.1)</td>
</tr>
<tr>
<td>Breast</td>
<td>6</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Liver</td>
<td>1</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>3</td>
<td>(0.4)</td>
</tr>
<tr>
<td>Metastases</td>
<td>1</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Lung disease suspicion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>200</td>
<td>(30.9)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>81</td>
<td>(12.5)</td>
</tr>
<tr>
<td>Pulmonary fibrosis</td>
<td>69</td>
<td>(10.4)</td>
</tr>
<tr>
<td>Emphysema</td>
<td>44</td>
<td>(6.8)</td>
</tr>
<tr>
<td>Bronchiectasis</td>
<td>19</td>
<td>(3.0)</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>6</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Susception of other diseases:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>119</td>
<td>(18.4)</td>
</tr>
<tr>
<td>Enlarged lymph nodes</td>
<td>52</td>
<td>(8.1)</td>
</tr>
<tr>
<td>Liver</td>
<td>52</td>
<td>(4.9)</td>
</tr>
<tr>
<td>Bone</td>
<td>21</td>
<td>(3.2)</td>
</tr>
<tr>
<td>Biliary</td>
<td>9</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>5</td>
<td>(0.8)</td>
</tr>
</tbody>
</table>

1Liver disease: all focal changes, cysts/metastases observation.
2Bone: 13 fracture obs., 1 Mb Bechterew obs., 3 metastases obs.
3Biliary: All choledocholithiasis obs.
4Pancreas: 3 chronic pancreatitis.

doi:10.1371/journal.pone.0112162.g001
with specific criteria (e.g. smokers or age above 50 years), the proportion of lung cancers diagnosed in our study would probably have been higher. However, the non-limited access shows the actual use and outcome when direct access is implemented. The fact that we found 40% stage I cancers in symptomatic patient could be due to an increased awareness of early signs of cancer among GPs in combination with easy access to a direct test.

The frequency of lung cancer was lower among patients referred directly to LDCT than for those referred to the lung cancer fast-track pathway. This indicates that the patients referred to a direct CT are a subgroup of patients with less pronounced symptoms and thus with a lower risk that the symptoms were due to cancer. Patients with “low, but not no risk” may be the ones who most GPs find difficult to handle in primary care. This is also supported by the higher PPV for cancer in the fast-track pathway for CME-participating GPs. We cannot make any causal inference of the associations found as these may be due to comparison of simply two different groups of GPs. However, our results may also indicate an effect of the CME and a changed pattern in use of direct access to CT, which can only be evaluated in an experimental design.

A Danish study found that a strategy with straight-to-test to CT for patients in the lung cancer fast-track was associated with high levels of staff acceptability and a reduction of chest physician time per patient without changing the numbers of performed CTs [27]. This implies that GPs are able to use CTs in a reasonably way.

This is, in this present study, supported by the low overall referral rate. In terms of variation we found no association between GP characteristics (age, gender, type of clinic, list size or levels of deprivation) and the use of CTs. A review from Scotland concluded that variation in GP referral rates in general is largely unexplained [28]. The study suggests that GPs with an interest or training in a particular field had a higher referral rate in that specialty. This may be the reason for the higher referral rate among GPs who participated in the CME. However, we can make no causal inference as these findings may be related to selection bias.

Conclusion

In a cohort study on direct CT referral from general practice, we found an overall referral rate of 0.10/1000 adults/month. Two-thirds of the GPs used the open access CT option. An association was found between participation in a lung cancer CME and direct referral to CT. An association was also found between GP participation in a CME on lung cancer diagnosis and a higher PPV of lung cancer when referring to the fast-track pathway compared to non-participating GPs.

Among patients referred to a CT, the proportion of lung cancers was 2.3%, 1.2% had other cancers and 14.4% had a non-malignant serious lung disease. The CTs resulted in 53.5% in need of additional diagnostic work-up or follow-up scans. Whether the open access to chest CT will result in earlier diagnosis and better

Table 5. The conclusion and diagnosis of the 648 CT scans performed during the study period.

<table>
<thead>
<tr>
<th>Conclusion:</th>
<th>Number</th>
<th>(%) of all scans</th>
</tr>
</thead>
<tbody>
<tr>
<td>All further</td>
<td>301</td>
<td>(46.5)</td>
</tr>
<tr>
<td>Pulmonary medicine</td>
<td>177</td>
<td>(27.3)</td>
</tr>
<tr>
<td>CT scan (6 month after)</td>
<td>84</td>
<td>(13.0)</td>
</tr>
<tr>
<td>CT scan (12 month after)</td>
<td>23</td>
<td>(3.5)</td>
</tr>
<tr>
<td>Other department</td>
<td>51</td>
<td>(7.9)</td>
</tr>
<tr>
<td>Treatment by GP</td>
<td>38</td>
<td>(5.9)</td>
</tr>
<tr>
<td>Diseases lump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>93</td>
<td>(14.4)</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>5/5</td>
<td>(0.8/0.8)</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>17/17</td>
<td>(2.6/2.6)</td>
</tr>
<tr>
<td>Emphysema</td>
<td>44/29</td>
<td>(6.8/4.5)</td>
</tr>
<tr>
<td>Bronchiectasis</td>
<td>19/19</td>
<td>(2.9/2.9)</td>
</tr>
<tr>
<td>Lung cancer:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCLC</td>
<td>15</td>
<td>(2.3)</td>
</tr>
<tr>
<td>Local</td>
<td>9</td>
<td>(1.4)</td>
</tr>
<tr>
<td>Metastatic</td>
<td>6</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Other cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>8</td>
<td>(1.2)</td>
</tr>
</tbody>
</table>

1 All lung disease diagnoses were new, except for 15 patients with emphysema and one patient with sarcoidosis (they had the diagnosis before the CT).

2 Of all lung cancers diagnosed in the study.

DOI: 10.1371/journal.pone.0112162.005
The effect of direct referral for fast CT scan in early lung cancer detection in general practice. A clinical, cluster-randomised trial

prognosis of lung cancer is yet unknown, and a randomised trial is required to assess any effect on outcome. The results from the randomised trial are under preparation for publication, and the authors have planned a two year follow-up on the 648 patients scanned in this study in regard to additional diagnoses as well as further diagnostic procedures. The question remains whether case-finding with LDCT in primary care is a better option for patients having signs and symptoms indicating lung cancer than a screening program. Furthermore, if low-dose CT screening is recommended, a consideration is whether a direct LDCT option from primary care should be implemented as well for patients who are not screened.

Supporting Information

Checklist S1 TREND checklist.

References

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e112162

Direct Access to Chest CT from General Practice

Protocol S1 Trial protocol.

Acknowledgments

We thank the Department of Radiology at Aarhus University Hospital for contribution with the CTs and the Department of Pulmonary Medicine at Aarhus University Hospital for the clinical evaluation of the scans.

Author Contributions

Conceived and designed the experiments: LMG TRR FR PV. Performed the experiments: LMG TRR FR PV. Analyzed the data: LMG PV. Contributed reagents/materials/analysis tools: TR. Wrote the paper: LMG PV FR TR.
PAPER IV

The effect of direct access to low-dose computed tomography in early lung cancer detection: an unblinded, cluster-randomised trial

Submitted BMC Cancer
The effect of direct access to low-dose Computed Tomography in early lung cancer detection: an unblinded, cluster-randomised trial

M.D. Louise Mahncke Guldbrandt, MSc. Morten Fenger-Grøn, PhD. Torben Riis Rasmussen, Dr. Med. Finn Rasmussen, PhD. Peter Meldgaard, Professor Peter Vedsted

1. Research Centre for Cancer Diagnosis in Primary Care, Research Unit for General Medical Practice, Aarhus University, Denmark
2. Section for General Medical Practice, Department of Public Health, Aarhus University, Denmark
3. Department of Pulmonary Medicine, Aarhus University Hospital, Aarhus, Denmark
4. Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
5. Department of Oncology, Aarhus University Hospital, Aarhus, Denmark

Correspondence:
Louise Mahncke Guldbrandt
MD, PhD Fellow
Research Centre for Cancer Diagnosis in Primary Care
Research Unit for General Practice
Aarhus University
Bartholins Alle 2
8000 Aarhus, Denmark

Email: louise.mahncke@feap.dk

Phone: +45 87168 037

Number of words: 4233
Number figures: 1
Number of Tables: 3
Abstract

Background: Lower lung cancer survival rates in Britain and Denmark compared with surrounding countries may, in part, be due to late diagnosis. The aim was to evaluate the effect of direct access to low-dose computed tomography (CT) from primary care in early lung cancer diagnostics on time to diagnosis and stage at diagnosis.

Method: We conducted a cluster-randomised, controlled trial including all incident lung cancer patients (331 patients) listed with general practice in the municipality of Aarhus (300,000 citizens), Denmark. Randomisation and intervention were applied at general practice level. The intervention included direct access to low-dose CT from primary care combined with a one-hour lung update meeting. Indication for CT was symptoms or signs that raised the GP’s suspicion of lung cancer, but fell short of satisfying the fast-track ‘red flag’ referral criteria. Main outcomes were time to diagnosis (primary care and diagnostic interval) and stage at diagnosis.

Results: The intervention did not significantly influence stage at diagnosis and had limited impact on time to diagnosis. However, when correcting for non-compliance, we found that the patients were at higher risk of experiencing a long diagnostic interval if their GPs were in the control group.

Conclusion: Direct low-dose CT from primary care did not statistically significantly decrease time to diagnosis or change stage at diagnosis in lung cancer patients. Direct access to low-dose CT may be an alternative to lung cancer screening. Furthermore, a recommendation of low-dose CT screening should consider offering symptomatic, unscreened patients an access to CT directly from primary care.

Trial registration: ClinicalTrials.gov, registration ID number NCT01527214.
Introduction

Lung cancer is the most common cause of cancer death in the industrialised world [1]. The stage of the disease profoundly predicts survival. Patients in Britain and Denmark have lower survival from lung cancer and fewer are diagnosed in the early stages compared with other European countries [2]. Much effort has therefore been devoted to achieving earlier diagnosis of lung cancer. British and Danish initiatives to expedite cancer diagnosis have included clinical initiatives as well as organisational initiatives (e.g. fast-track referral pathway in Denmark [3, 4]).

Most lung cancer patients with symptomatic disease present to the general practitioner (GP) before diagnosis [5, 6]. Symptoms that may indicate lung cancer are common in primary care [7]. GPs must distinguish between those few patients whose symptoms are due to lung cancer and the large group of patients who have benign disease [8]. Essentially three difficulties have been revealed; a significant proportion of lung cancer patients present with unspecific symptoms with low positive predictive values [9], the majority of lung cancer patients are diagnosed by other routes than the expedited one [10, 11], and there may be a need for a technological update of the primary diagnostic investigation which has been the chest X-ray. Thus, 15-23% of all new lung cancer patients have had a false-negative chest X-ray before diagnosis, which has important implications for the time to diagnosis [12-14]. A low-dose computed tomography (CT), on the other hand, has proven to have a high sensitivity for lung cancer [15], even in early-stage cancer. However, we do not know whether direct access to low-dose CT will optimise lung cancer diagnosis in symptomatic patients seen by their GPs.

We hypothesised that GPs who had direct access to CT and received an update on lung cancer detection would diagnose lung cancer faster and at earlier stages. Furthermore, we hypothesised that this intervention would increase the GPs’ awareness of lung cancer and make them increase their standard investigations (e.g. fast-track use) for lung cancer.

The aim of this study was to evaluate the effect of direct access to fast low-dose chest CT combined with specific training in the diagnosis of lung cancer in general practice on the time to diagnosis and the stage at diagnosis. Furthermore, we wanted to evaluate differences between the intervention practices’ and the control practices’ use of fast-track investigation and their fast-track positive predictive values (PPVs).
Materials and methods
We conducted a cluster-randomised, controlled, two-arm (1:1), unblinded study. The intervention was a technological upgrade comprising direct access to chest low-dose CT combined with a simple continuing medical education (CME) meeting on lung cancer diagnostics in general practice. The study took place in Aarhus municipality, Denmark, during a 19-month period from November 2011 to June 2013.

Denmark has a tax-financed healthcare system with free access to medical advice and treatment. Approximately 99% of Danish citizens are registered with a GP whom they must consult for medical advice. GPs act as gatekeepers to investigations and hospitals with a few exceptions.

Before November 2011, the GPs in the area had three diagnostic work-up possibilities for patients with respiratory symptoms that could indicate lung cancer. They could either refer patients to 1) an X-ray, 2) the Department of Pulmonary Medicine within the normal waiting list, or 3) the lung cancer fast-track pathway with a maximum of 72 hours’ waiting time. Indication for fast-track was either an abnormal chest X-ray or certain qualifying ‘red-flag’ symptoms (e.g. haemoptysis or coughing (>four weeks)). GPs were not allowed to refer directly to a CT.

Participants:
A total of 119 general practices in the catchment area of a single department of pulmonary medicine, Aarhus University Hospital, with 266 GPs were randomised into two groups (Figure 1). At patient level, the inclusion criteria were that the patient was on the list of a participating GP during the study period and had a recent diagnosis of lung cancer (ICD10 34.0-9).

Randomisation:
The randomisation was performed by a data manager using Stata 12.0. The practices were allocated a random number between zero and one and listed from the lowest to the highest value. The top 60 practice addresses (133 GPs) formed the intervention group with practice addresses as cluster level.

Intervention:
The intervention was allocated at the cluster level. Six times within an initial 3-month period, the intervention practices were informed by letter about the intervention. The letters included information concerning the referral procedures and indications for the CTs. The indication was the GP’s suspicion that the patient’s signs and symptoms could possibly be related to lung cancer. Excepted from this were patients who met the indication for fast-track pathway referral who should be referred to the fast-track as usual.
The GPs were offered participation in a one-hour small-group-based CME meeting held during the first two months of the study to increase their awareness of early lung cancer and to encourage them to refer more patients to tests (CT scan or fast-track pathway) for lung cancer. During the meeting, the GPs were briefed about the state-of-the-art on early detection of lung cancer based on algorithms for positive predictive values in primary care [9, 16].

Controls were not informed about the study and they hence continued referring their patients as usual.

The Department of Radiology, Aarhus University Hospital, carried out the CTs. The scans were performed on a Brilliance 64, Philips, Best, the Netherlands: collimation 64 x 0.625, slice thickness 2 mm, increment 1 mm, pitch 1, rotation time 0.75 sec. The effective radiation dose (Monte Carlo Simulation Software, CT-Expo v. 2.1) was 2-3 mSv. Intravenous contrast medium was not administered. The waiting time limit from referral to performed CT was two working days.

The CT reports were made by three sub-specialised radiologists. A recommendation was compiled at a conference between a chest physician and a radiologist the day after the scan, and forwarded electronically to the GP. The GP had full responsibility for informing the patient about the result and, if necessary, to refer the patient for further diagnostic work-up.

If non-benign lung nodules (4-10 mm) were detected, the GP was informed to refer the patient to a follow-up program following international standard (3, 6 or 12 months after the first scan)[17]. Incidental findings on the CT scan outside the lungs of clinical significance were reported to the GP with recommendations for referral to a relevant department.

If the CT scan revealed any suspicion of lung cancer, the patients were referred by the GP through the fast-track pathway to standard diagnostic work-up at the Department of Pulmonary Medicine. The diagnostic work-up included contrast enhanced CT. Furthermore, a diagnosis was obtained by either bronchoscopy with biopsy, fine-needle aspiration (FNA) in association with endoscopic ultrasound (EUS) or endobronchial ultrasound (EBUS), or transthoracic FNA. The final clinical staging of lung cancer was provided by a multi-disciplinary team decision according to the 7th TNM Classification of Malignant Tumors [18]. Early-stage patients (stage I-IIIb) were offered surgical resection according to Danish guidelines.

Sample size:
It can be assumed that lung cancer patients are randomly distributed among GPs. However, the incidence of lung cancer could be higher in some areas with many smokers and many elderly patients. To account for an unknown intra-cluster correlation coefficient (ICC), we calculated a design effect of 1.25 [19].
In 2008 half of the Danish lung patients waited 33 days or more (the median) from first presentation to primary care to diagnosis of lung cancer [20]. We wanted to be able to show a decrease in the diagnostic interval to a level where only 25% of the patients had to wait 33 days or more. Thus, a reduction in the proportion waiting 33 days or more should be halved. With a one-sided alpha of 5% and a power of 80%, we had to include 54 lung cancer patients in each arm with a 1:1 randomisation. Given the design effect, we had to include a total of 54*2*1.25 = 135 lung cancer patients with questionnaire data and GP involvement in the diagnosis.

Harms:
This intervention offered the GP an update on lung cancer and direct access to a low-dose CT. If the GP or the patient did not want to participate, they could always choose not to. A potential harm was the extent of nodules and incidental findings in the scans that may lead to further examinations which could turn out to be unnecessary if the findings were benign. The number of derivative investigations after the low-dose CT scan has been published previously [21].

Outcomes:
Primary outcomes were the primary care interval (defined as the time from the patient’s first presentation in primary care until referral to secondary care) and the diagnostic interval (defined as the time from the first presentation until decisive diagnosis) [22].

The secondary outcome was the stage at diagnosis as stated in a multidisciplinary team’s decision on the clinical TNM (cTNM) stage (version 7). The stage was then dichotomised into local and advanced using a cut-point between stage IIIA and IIIB. This was done as there is a significant difference in mortality between these two stages [23].

As a naturally derived effect of the new diagnostic modality combined with a CME focusing on lung cancer diagnosis, we wanted to test whether there was a difference in the use of fast-track and the PPV for lung cancer in the fast-track between intervention and control GPs. Patients referred to fast-track evaluation for lung cancer were coded DZ 03.1B (lung cancer observation). This code, combined with the unique general practice number, gave information about referral to the fast-track pathway.

Variables and data sources:
All cases of lung cancer (ICD10 34.0-9) were identified starting from 1 January 2012. To ensure completeness, cases were obtained from a combined identification in the Danish Lung Cancer Registry (DLCR) and the Danish National Patient Registry (NPR). The lung cancer cases were checked against practice
patient lists in order to identify the patients’ GPs. From these lists, we also gathered information about the size of the practice lists and the age and gender distributions of the patients listed with each practice.

The DLCR was established in 2001 as a national database. Since 2003, data have covered more than 90% of all lung cancer cases in Denmark [24]. The NPR is a national population-based database containing admission/discharge dates and discharge diagnosis on all inpatient, outpatient and emergency visits at Danish hospitals [25].

We used the Danish Deprivation Index (DADI) to gather information about deprivation level in the different GP clinics’ populations. The index consists of eight variables registered in Statistics Denmark for all citizens [26]. The DADI data are expressed numerically as a value between 10 and 100; the higher the number, the more deprived the practice population. The variables used are: (i) Proportion of adults (20-59 yrs.) with no employment, (ii) proportion of adults (25-59) with no professional education, (iii) proportion of adults (25-59) with low income, (iv) proportion of adults (18-59) receiving public welfare payments (transfer income or social benefits), (v) proportion of children from parents with no education and no professional skills, (vi) proportion of immigrants, (vii) proportion of adults aged 30+ living alone and (viii) proportion of adults (aged 70+) with low income (= the lowest national quartile).

Data on patient comorbidity were obtained from a GP questionnaire in which the GP stated if comorbidity was present or not. Data on each identified lung cancer patient’s socio-economic position were collected from Statistics Denmark. Education included basic school and was dichotomised into “≤10 years” and “>10 years” [27]. Marital status was dichotomised into “cohabitating” or “living alone”.

The Danish civil registration number (CRN), a unique 10-digit personal identification number, was used to link registers [28].

GP questionnaire:
A questionnaire was sent to the lung cancer patient’s general practice. The GPs were told to use their medical records when answering questions about whether the general practice/GP had been involved in the diagnosis of the lung cancer, together with the dates in the diagnostic pathway and the use of a fast-track pathway. The questionnaire was based on previously used and validated items [12, 20, 22, 29]. The responding doctors got a reimbursement for participation (£17, £15).

Statistical methods:
Pearson’s chi-squared test or Wilcoxon rank-test were used for comparison of patients listed with either intervention or control GPs in terms of baseline characteristics as well as for the crude analysis of study outcomes.

Primary analyses were by standard intention-to-treat with participants analysed according to their GP’s randomisation. The primary care and the diagnostic interval are presented as medians with inter-quartile intervals (IQI). We used general linear models (GLM) for the binomial family to calculate associations between long intervals and the patients’ randomisation status. Long intervals were defined as the 4th quartile of similar intervals from Danish lung cancer patients in 2010 [30]. In these analyses, we accounted for clusters of patients within GPs using cluster robust variance estimation and adjusted for patient age and presence of comorbidity as it has previously been shown that these factors can influence the length of the intervals [30].

In supplementary analyses, we corrected for non-compliance by comparing patients from GPs who participated in the CME with patients from a similar group of patients from control GPs [31]. These estimates are not diluted by lack of compliance as they are standard in intent-to-treat analyses.

Referral rates were calculated based on the number of patients referred by the GP per project month per patient aged 25 years and above. For the non-compliance analyses on referral rates, we used the risk of having a low referral rate (defined as among the 25% lowest referral rates for the two groups together).

Numbers analysed:
Descriptive analyses and analyses on cancer stage were performed for the entire study population. The analysis of time intervals was restricted to patients for whom the GP returned the questionnaire and for whom the GP was involved in the diagnosis.

Ethics:
The study was approved by the Danish Data Protection Agency (ref. no.: 2011-41-6872) and the Danish Health and Medicines Authority (ref. no.: 7-604-04-2/357/KWH). According to the Research Ethics Committee of the Central Denmark Region, the Danish Act on Research Ethics Review of Health Research Projects did not apply to this project (ref.no.: 118/2011) as CT was already a widely used technology. Patients who were referred to the low-dose CT were informed by the GP, no informed consents were needed. The study is registered at Clinical Trials (Clinicaltrials.gov: NCT01527214).
Results

Participants flow:
During the study period, 331 incident lung cancer patients were diagnosed; 171 were listed with intervention GPs and 160 with control GPs (Figure 1). In the intervention group, 80.1% (137 patients) of the GP questionnaires were returned; in the control group, 81.9% (131 patients). Intervention GPs were involved in the lung cancer diagnosis of 97 patients (70.8%, 95%CI: 62.4-78.3), whereas the GPs in the control group were involved in the diagnosis of 82 patients (62.6%, 95%CI: 53.7-70.9) (p=0.154).

Baseline data:
The GPs in the intervention group were slightly older, more were working in a solo practice, and their patients were slightly more deprived (Table 1). Sixty-four (48.5%) of the GPs who were offered CME participated.

Lung cancer patients from the intervention and the control GPs were similar with respect to age, education, marital status and comorbidity, while the control group had a higher proportion of women (Table 2). No statistically significant differences between the intervention and the control group patients for which the GPs returned the questionnaire were observed (Appendix Table 1).

Primary outcomes: The primary care and the diagnostic intervals

For all patients, the median primary care interval was 16 days (IQI: 4-56) (Table 3). There was no statistically significant difference in primary care interval between patients in the intervention group (median: 14 days, IQI: 4-53) and patients in the control group (median: 18 days, IQI: 5-69).

The overall median diagnostic interval was 39 days (IQI: 17-93). Patients listed with control GPs had a statistically insignificantly longer median diagnostic interval (44 days, IQI: 17-112) than patients listed with intervention GPs (36 days, IQI: 17-83) (p=0.299).

There was no difference in the proportions experiencing long primary care or diagnostic intervals between patients from the control and the intervention groups. Within the intervention group, both primary care and diagnostic intervals were statistically significantly shorter if the GP participated in the CME (primary care interval median: 9 days vs. 37 days, p= 0.048; diagnostic interval median: 23 vs. 66, p=0.008).

Correcting for non-compliance, we found a statistically insignificantly higher risk for having a long diagnostic interval for patients from the control group (risk difference (RD): 13.5% (95%CI: -11.0-37.9%, p-
value=0.280)). No difference in risk for having a long primary care interval was observed using this approach (RD: 1.1% (95%CI: 123.9-26.1%, p-value=0.929)).

Secondary outcome: Stage

A total of 41.4% of all lung cancer patients were in a localised stage. There was no difference in stage distribution between patients from the control and the intervention GPs in the non-adjusted analyses (Table 4). We found no difference in the risk of having localised stage when adjusting for non-compliance (RD: 1.5, 95%CI: -31.8-34.9, p value=0.927).

General effects on other diagnostic strategies

The GPs referred 836 patients to the lung cancer fast-track during the study period which resulted in 81 lung cancer diagnoses. This corresponds to a PPV of 9.7% (10.1% for control GPs and 9.4% for intervention GPs; p-value: 0.732) for lung cancer diagnosed via the fast-track lung cancer pathway. The proportion of patients with advanced disease was 59.3% and we found no difference in stage distribution between all patients from intervention and all patients from control GPs. The unadjusted referral rate to fast-track was 0.17 per 1000 adults listed per GP per month (95% CI: 0.12-0.25) for intervention GPs compared with 0.15 (95% CI: 0.11-0.24) for control GPs (p-value: 0.417). When correcting for non-compliance, we found no difference in PPV between the two groups (RD: 1.1% (95%CI: -5.8-8.2, p-value: 0.740)), but a statistically insignificantly higher risk for having a low referral rate (below the lowest referral rate quartile) to fast-track for control GPs (RD: 6.3% (95%CI: -22.7-35.3, p-value: 0.670)).
Discussion

Main results:
In a cluster-randomised trial with a combination of CME on the diagnosis of lung cancer and direct access to low-dose chest CT, we found no statistically significant difference in primary care or diagnostic intervals between patients listed with the control and the intervention GPs. However, when correcting for non-compliance, we found that the patients were at higher risk of experiencing a long diagnostic interval if their GPs were in the control group. There was no difference between the groups in terms of stage, the use of the fast-track pathway or the PPV (in the fast-track) for lung cancer.

Strength and limitations:
This study is, to the authors’ knowledge, the first randomised controlled trial testing the effect of direct access to low-dose CT from primary care. The study design of randomising by clusters at the level of general practice address (and not at the level of patient or clinician) was appropriate to the research question. It would not be possible to ask the GP to allocate individual patients randomly, and allocating individual GPs within a practice would invite a risk of spill over [19].

A major strength of this study is the well-defined study population and the large number of patients. The data obtained in the registries were complete, as were data on GP participation in the CME.

The high response rate of 81.0% minimises the risk of selection bias, as seen also by the similarity of the lung cancer patients in the control and the intervention group. However, patients who were not included due to GP non-response may differ from patients of responding GPs in respect of diagnostic intervals.

A potential risk of information bias exists due to GP recall bias. However, the GPs were asked to answer the questionnaire based on their electronic records. GPs in the intervention group who participated in the CME might estimate the intervals even longer than the control GPs because they had recently received an update on lung cancer symptoms and their awareness of such symptoms in the daily practice would hence be heightened. This could explain the non-significant difference in the primary care interval between the two groups.

Unfortunately, only about half of the invited GPs participated in the CME. The correction for non-compliance addresses this problem, but the analyses increase the uncertainty of the estimates and the study may hence be underpowered because the low participation rate of GPs was duly catered for in our sample size calculation. Still, the risk of experiencing a long diagnostic interval was 13% higher in the control group than in the intervention group that also participated in the CME. This means that CME
combined with direct access to CT may have expedited diagnosis, but a larger study is needed to fully evaluate the effect as we cannot falsify that there was no effect.

Lung cancer develops over a period of many years, and a study period of 19 months may not have been sufficiently long to demonstrate the shift in stage towards more localized cancer detectable by CT.

The intervention GPs in this study were offered a one-hour lung cancer up-date. Those who agreed to participate may have been more interested in lung cancer, and this group of GPs may already have performed better in diagnosing lung cancer, which would potentially underestimate the effect of training if it was generalised. We did find that the patients of intervention GPs participating in the CME had much shorter intervals than patients of non-participating GPs. This either implies that the intervention was a success or that the intervention GPs who received CME already performed better than the rest of the intervention group.

The intervention group referred statistically insignificantly more patients to the fast-track pathway but the PPV for lung cancer was identical in the two groups of GPs. This may indicate that CME has a positive effect and makes the GPs refer more patients to diagnostics. The PPV was the same although an extra CT-scan was an option, which may suggest that intervention GPs find more cancer patients in their practices, maybe because of a greater awareness of lung cancer signs and symptoms.

The present study utilised low-dose CT as the diagnostic tool. For lung cancer, CT has a high sensitivity, but a lower specificity. This implies that the method involves a risk of patient distress because of the relatively high number of false positive scans. Furthermore, a widespread concern is the risk of cancer secondary to radiation from the low-dose CTs and the subsequent imaging used to evaluate positive screens. A US study from 2013 addresses this problem in connection with low-dose CT screening studies [32]. Based on epidemiological data on radiation exposure and assuming annual low-dose CT from age 55 to age 74 (20 scans), they estimate a lifetime attributable risk of lung cancer mortality of 0.07 % for males and 0.14 for females. One single low-dose CT utilises not even half of the total annual radiation exposure from natural and man-made sources. In addition, the group of patients referred to a low-dose CT may have a higher risk of having lung cancer or other important diseases than other groups of patients, and the small radiation dose may contribute only very little to the other risks these patients are facing.

Generalisability:

This Danish single-setting randomised, controlled trial with complete inclusion of patients holds the opportunity to generalise the study results to other settings in which general practice serves as the first line of healthcare.
Comparison with relevant literature:
In the present study, the median primary care interval was 16 days which is longer than the similar Danish interval in 2010 (median 7 days, IQ: 0-30) [30]. Whether this means that the diagnosis of lung cancer is less expedite in 2012-2013 than in 2010 is unknown, but we suggest that it may rather be because of increased awareness of lung cancer symptoms and early diagnosis and therefore an earlier first symptom presentation date listed in the questionnaire.

The patients listed at CME participating GPs had shorter diagnostic intervals than the patients listed at not-participating GPs. These findings are in line with results from a British study in 2012 [33]. The study showed that a simple information campaign could educate physicians (and the public) and thereby induce change in behaviour and increase the chest X-ray referral rate.

In the present study, 15 lung cancers were diagnosed in 648 direct CT scans from primary care (2.3%) [21]. Because of the symptomatic presentation, more lung cancers are diagnosed than by screening. In the US screening trial, lung cancer was diagnosed in 0.7% of screenings [34], in the Danish screening trial the incidence was 0.8% [35]. This suggests that use of CT scan in symptomatic patients performs better than screening.

Conclusions and implications
This randomised, controlled study with direct access to low-dose CT had no statistically significant effect on time to diagnosis or stage at diagnosis in lung cancer patients. However, it could have an effect in a larger scale study with more statistical power. Also, we do not know how direct CT will perform in terms of patient/doctor satisfaction and in connection with diagnosis of other lung diseases; these issues were beyond the scope of the present study. Direct access to low-dose CT scan may be an alternative to lung cancer screening. Furthermore, a recommendation of low-dose CT screening should consider offering symptomatic, unscreened patients access to CT directly from primary care.
Acknowledgements and funding
The project was supported by the Committee for Quality Improvement and Continuing Medical Education (KEU) of the Central Denmark Region, the Multi-Practice Committee (MPU) of the Danish College of General Practitioners (DSAM), the Danish Cancer Research Foundation, the Danish Cancer Society and the Novo Nordisk Foundation. The sponsoring organisations were not involved in any part of the study.
We thank the Department of Radiology at Aarhus University Hospital for contribution with the CTs and the Department of Pulmonary Medicine for the clinical evaluation of the scans. ClinicalTrials.gov, registration ID number NCT01527214.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
LM, TRR, FR, PM and PV participated in the design of the study and helped with the interpretation of the results. LM and MFG performed the statistical analysis. LM conceived the study and drafted the manuscript. TRR, FR, PM, MFG and PV helped to draft the manuscript. All authors read and approved the final manuscript.

Keywords
Lung cancer, early diagnostics, primary care, low-dose computed tomography.
References

26. Statistics Denmark. [www.sst.dk]

The effect of direct referral for fast CT scan in early lung cancer detection in general practice.
A clinical, cluster-randomised trial

Figure 1: Participants flow

* Percentage of patients with questionnaire data.
Table 1. Baseline characteristics of GPs in the control and intervention groups. Numbers with (percentages) unless stated otherwise.

<table>
<thead>
<tr>
<th></th>
<th>GP intervention</th>
<th>GP control</th>
</tr>
</thead>
<tbody>
<tr>
<td>All GPs</td>
<td>133</td>
<td>133</td>
</tr>
<tr>
<td>All practice</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>68 (51.1)</td>
<td>64 (48.1)</td>
</tr>
<tr>
<td>Female</td>
<td>65 (48.9)</td>
<td>69 (51.9)</td>
</tr>
<tr>
<td>Age:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (min-max)</td>
<td>53.6 (38-68)</td>
<td>51.6 (38-65)</td>
</tr>
<tr>
<td>38-45 yrs.</td>
<td>26 (19.5)</td>
<td>23 (17.3)</td>
</tr>
<tr>
<td>46-55 yrs.</td>
<td>67 (50.4)</td>
<td>52 (39.1)</td>
</tr>
<tr>
<td>56-68 yrs.</td>
<td>40 (30.1)</td>
<td>58 (43.6)</td>
</tr>
<tr>
<td>Practice type:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solo</td>
<td>21 (35.0)</td>
<td>16 (27.1)</td>
</tr>
<tr>
<td>2 or more</td>
<td>39 (65.0)</td>
<td>43 (72.9)</td>
</tr>
<tr>
<td>List size/GP(^{1}) Median (range)</td>
<td>1008 (585-2780)</td>
<td>992 (500-3347)</td>
</tr>
<tr>
<td>DADI(^{2}), Median (IQR)</td>
<td>25.4 (20.5-31.6)</td>
<td>22.5 (18.5-30.8)</td>
</tr>
<tr>
<td>CME participation</td>
<td>64 (48.5)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Characteristics of the lung cancer patients. All patients, patients from control and intervention GPs, and patients for whom the GP was involved in the diagnosis of the lung cancer.

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Intervention all</th>
<th>Control all</th>
<th>P-value</th>
<th>Intervention, GP involved</th>
<th>Control, GP involved</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>331 (100)</td>
<td>171 (51.7)</td>
<td>160 (48.3)</td>
<td>97 (70.8)</td>
<td>82</td>
<td>46 (47.4)</td>
<td>40 (48.8)</td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>157 (47.4)</td>
<td>91 (53.2)</td>
<td>66 (41.3)</td>
<td>0.029¹</td>
<td>46 (47.4)</td>
<td>40 (48.8)</td>
<td>0.459</td>
</tr>
<tr>
<td>Female</td>
<td>174 (52.6)</td>
<td>80 (46.8)</td>
<td>94 (58.7)</td>
<td></td>
<td>51 (52.6)</td>
<td>42 (51.2)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (95%CI)</td>
<td>69.4 (68.4-70.5)</td>
<td>69.6 (68.1-70.5)</td>
<td>69.3 (67.7-70.8)</td>
<td>0.799¹</td>
<td>69.8 (67.8-71.7)</td>
<td>68.3 (66.2-70.4)</td>
<td>0.830²</td>
</tr>
<tr>
<td>Range</td>
<td>40-97 yrs.</td>
<td>40-97 yrs.</td>
<td>44-86 yrs.</td>
<td>0.904²</td>
<td>19 (47.5)</td>
<td>16 (19.5)</td>
<td>0.440³</td>
</tr>
<tr>
<td>40-59 yrs</td>
<td>61 (23.3)</td>
<td>33 (19.3)</td>
<td>28 (17.5)</td>
<td></td>
<td>19 (47.5)</td>
<td>16 (19.5)</td>
<td></td>
</tr>
<tr>
<td>60-79 yrs</td>
<td>222 (67.0)</td>
<td>111 (64.9)</td>
<td>111 (69.4)</td>
<td></td>
<td>63 (64.9)</td>
<td>59 (72.0)</td>
<td></td>
</tr>
<tr>
<td>80+</td>
<td>48 (14.5)</td>
<td>27 (15.8)</td>
<td>21 (13.1)</td>
<td></td>
<td>15 (15.4)</td>
<td>7 (8.5)</td>
<td></td>
</tr>
<tr>
<td>Education:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10 yrs</td>
<td>136 (41.1)</td>
<td>67 (39.2)</td>
<td>69 (43.1)</td>
<td>0.733³</td>
<td>35 (36.1)</td>
<td>37 (45.1)</td>
<td>0.434⁴</td>
</tr>
<tr>
<td>10-15</td>
<td>146 (44.1)</td>
<td>77 (45.0)</td>
<td>69 (43.1)</td>
<td></td>
<td>45 (46.4)</td>
<td>33 (40.3)</td>
<td></td>
</tr>
<tr>
<td>> 15 yrs</td>
<td>40 (11.8)</td>
<td>20 (11.7)</td>
<td>20 (12.5)</td>
<td></td>
<td>13 (13.4)</td>
<td>11 (13.4)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>9 (2.7)</td>
<td>7 (4.1)</td>
<td>2 (1.3)</td>
<td></td>
<td>4 (4.1)</td>
<td>1 (1.2)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohabitating</td>
<td>172 (52.0)</td>
<td>88 (51.5)</td>
<td>84 (52.5)</td>
<td>0.850²</td>
<td>55 (56.7)</td>
<td>44 (53.7)</td>
<td>0.422¹</td>
</tr>
<tr>
<td>Living alone</td>
<td>159 (48.0)</td>
<td>83 (48.5)</td>
<td>76 (47.5)</td>
<td></td>
<td>42 (43.3)</td>
<td>38 (46.3)</td>
<td></td>
</tr>
<tr>
<td>Comorbidity - questionnaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>231 (69.8)</td>
<td>83 (85.6)</td>
<td>69 (84.1)</td>
<td></td>
<td></td>
<td></td>
<td>0.663¹</td>
</tr>
<tr>
<td>No</td>
<td>35 (10.6)</td>
<td>13 (13.4)</td>
<td>13 (15.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>65 (19.6)</td>
<td>1 (1.0)</td>
<td>0 (0.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Differences between groups were tested by Pearson’s χ² test. ² Age difference between groups were tested by Student’s T-test. ³ Differences between groups were tested by Wilcoxon test.
Table 3. Primary care and diagnostic intervals (in days) for lung cancer patients with a referral route involving the GP, according to groups. Only GP-involved patients are included in the analyses. Adjusted and unadjusted associations for long intervals (the 75 percentile from 2010) are presented as prevalence ratios (PRs) with 95% confidence intervals (95% CI).

<table>
<thead>
<tr>
<th>Primary care interval:</th>
<th>Diagnostic interval:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>All</td>
<td>155</td>
</tr>
<tr>
<td>Controls</td>
<td>74</td>
</tr>
<tr>
<td>Intervention</td>
<td>81</td>
</tr>
<tr>
<td>Intervention:</td>
<td></td>
</tr>
<tr>
<td>- CME²</td>
<td>32</td>
</tr>
<tr>
<td>+ CME²</td>
<td>49</td>
</tr>
</tbody>
</table>

*Adjusted for patient age and comorbidity (yes/no). Clusters are accounted for. ¹ The GPs who did not participate in CME or who did not work in a clinic with a GP who participated.
²The GPs participating in CME or working in a clinic with a participating GP. Differences between groups were tested by Wilcoxon test.
Differences between groups were tested by Wilcoxon test. Differences between groups were tested by Pearson's χ^2 test.

Table 4. Stage distribution for patients in the study (all patients divided between intervention and controls), and only for patients for whom the GP was involved in the diagnosis.

<table>
<thead>
<tr>
<th>Stage</th>
<th>All patients</th>
<th>Controls, all</th>
<th>Intervention, all</th>
<th>P-value</th>
<th>Controls, involved</th>
<th>Intervention, involved</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>Stage IA</td>
<td>46 (13.9)</td>
<td>19 (11.9)</td>
<td>27 (15.8)</td>
<td>4 (4.9)</td>
<td>11 (11.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IB</td>
<td>33 (10.0)</td>
<td>18 (11.3)</td>
<td>15 (8.8)</td>
<td>8 (9.8)</td>
<td>8 (8.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IIA</td>
<td>14 (4.2)</td>
<td>3 (1.9)</td>
<td>3 (1.8)</td>
<td>3 (3.7)</td>
<td>3 (3.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>22 (6.6)</td>
<td>11 (6.9)</td>
<td>11 (6.4)</td>
<td>7 (8.5)</td>
<td>7 (7.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>22 (6.6)</td>
<td>9 (5.5)</td>
<td>13 (7.6)</td>
<td>5 (6.1)</td>
<td>6 (6.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>24 (7.3)</td>
<td>12 (7.5)</td>
<td>12 (7.0)</td>
<td>7 (8.5)</td>
<td>9 (9.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>170 (51.4)</td>
<td>88 (55.0)</td>
<td>90 (52.6)</td>
<td>0.586</td>
<td>48 (58.5)</td>
<td>53 (54.6)</td>
<td>0.470</td>
</tr>
<tr>
<td>Localised (I-IIIA)</td>
<td>137 (41.4)</td>
<td>60 (37.5)</td>
<td>69 (40.4)</td>
<td>0.595</td>
<td>27 (32.9)</td>
<td>35 (36.1)</td>
<td>0.658</td>
</tr>
<tr>
<td>Metastatic (IIIB-IV)</td>
<td>194 (58.6)</td>
<td>100 (62.5)</td>
<td>102 (59.6)</td>
<td>55 (67.1)</td>
<td>62 (63.9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Differences between groups were tested by Wilcoxon test. 2 Differences between groups were tested by Pearson’s χ^2 test.
Appendix table 1. Characteristics of the lung cancer patients for whom intervention and control GPs returned the questionnaire.

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Intervention + questionnaire</th>
<th>Control + questionnaire</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>All: n</td>
<td>331</td>
<td>137 (80.1)</td>
<td>131 (81.9)</td>
<td></td>
</tr>
<tr>
<td>Gender:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>157 (47.4)</td>
<td>72 (52.6)</td>
<td>55 (42.0)</td>
<td>0.083¹</td>
</tr>
<tr>
<td>Female</td>
<td>174 (52.6)</td>
<td>65 (47.4)</td>
<td>76 (58.0)</td>
<td></td>
</tr>
<tr>
<td>Age:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (95%CI)</td>
<td>69.4 (68.4-70.5)</td>
<td>69.5 (67.9-71.1)</td>
<td>69.2 (67.5-70.9)</td>
<td>0.614²</td>
</tr>
<tr>
<td>Range</td>
<td>40-97 yrs.</td>
<td>45-90 yrs.</td>
<td>44-86 yrs.</td>
<td></td>
</tr>
<tr>
<td>40-59 yrs</td>
<td>61 (18.4)</td>
<td>26 (19.0)</td>
<td>23 (17.6)</td>
<td>0.821¹</td>
</tr>
<tr>
<td>60-79 yrs</td>
<td>222 (67.0)</td>
<td>90 (65.7)</td>
<td>92 (70.2)</td>
<td></td>
</tr>
<tr>
<td>80+</td>
<td>48 (14.5)</td>
<td>21 (15.3)</td>
<td>16 (12.2)</td>
<td></td>
</tr>
<tr>
<td>Education:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10 yrs</td>
<td>136 (41.1)</td>
<td>54 (39.4)</td>
<td>60 (45.8)</td>
<td>0.389³</td>
</tr>
<tr>
<td>10-15</td>
<td>146 (44.1)</td>
<td>61 (44.5)</td>
<td>54 (41.2)</td>
<td></td>
</tr>
<tr>
<td>>15 yrs</td>
<td>40 (12.1)</td>
<td>17 (12.4)</td>
<td>15 (11.5)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>9 (2.7)</td>
<td>5 (3.7)</td>
<td>2 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohabitating</td>
<td>172 (52.0)</td>
<td>70 (51.1)</td>
<td>71 (54.2)</td>
<td>0.612¹</td>
</tr>
<tr>
<td>Living alone</td>
<td>159 (48.0)</td>
<td>67 (48.9)</td>
<td>60 (45.8)</td>
<td></td>
</tr>
<tr>
<td>Comorbidity*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>231 (69.8)</td>
<td>117 (85.4)</td>
<td>114 (87.0)</td>
<td>0.932¹</td>
</tr>
<tr>
<td>No</td>
<td>35 (10.6)</td>
<td>18 (13.1)</td>
<td>17 (13.0)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>65 (19.6)</td>
<td>2 (1.5)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>